Skip to main content
Log in

Dynamics of the Plasma Bunch at the Initial and Following Stages of Motion in a Rarefied Gas

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Physical and comprehensive numerical studies of the generation of plasma bunches with a high specific energy have been carried out with the use of a plasma gun. The parameters of the plasma bunch upon exit from the plasma accelerator and during propagation in the ionosphere (h > 200 km) to considerable distances (≈100 km) have been calculated. A special numerical algorithm is presented to determine the results of the impact of a rarefied high-velocity gas flow (\({v}\) ∼ 5 × 107 cm/s) on the surface of crystalline and amorphous solid bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.

Similar content being viewed by others

REFERENCES

  1. Alipchenkov, V.M., Konkashbaev, I.K., Ryltseva, T.V., and Ulinich, F.P., Thermalization of a two-stream plasma, Fiz. Plazmy, 1978, vol. 4, no. 5, pp. 1051–1055.

    Google Scholar 

  2. Anan’in, O.B., Bykovskii, Yu.A., Stupitskii, E.L., et al., Laser plasma interaction with rarefied gas, Preprint of Moscow Inst. of Engineering Physics (MIFI), Moscow, 1985, no. 012-85.

  3. Arkhipov, N.I., Zhiltukhin, A.M., Sofronov, V.M., et al., Ion temperature in fluxes of powerful electrodynamic accelerators, Fiz. Plazmy, 1985, vol. 11, no. 2, pp. 201–205.

    Google Scholar 

  4. Artsimovich, L.A. and Sagdeev, R.Z., Fizika plazmy dlya fizikov (Plasma Physics for Physicists), Moscow: Atomizdat, 1972.

  5. Borisov, I.I., Vasil’ev, V.I., Zhitlukhin, N.R., et al., Spectroscopy of the interaction of pulse plasma fluxes with the surface of MKT facilities, Fiz. Plazmy, 1994, vol. 20, no. 1, pp. 81–83.

    Google Scholar 

  6. Brode, H.L., Deistvie yadernogo vzryva (Review of Nuclear Weapons Effects), Moscow: Mir, 1971.

  7. Brunetkin, B.A., Stupitsky, E.L., Repin, A.Yu., et al., Interaction of laser-produced plasma clouds in vacuum and background medium, J. Phys. D: Appl. Phys., 1992a, vol. 25, no. 11, pp. 1583–1590.

    Article  Google Scholar 

  8. Brunetkin, B.A., Stupitsky, E.L., Repin, A.Yu., et al., Laser-produced plasma expansion in a uniform magnetic field, Laser Part. Beams, 1992b, vol. 10, no. 4, pp. 723–735.

    Article  Google Scholar 

  9. https://www.amazon.com/X-Ray-Spectroscopy-Laboratory-Astrophysical-Plasmas/dp/0521548160#reader_0521548160.

  10. Degnan, J.H., Compact toroid formation, compression and acceleration, Phys. Fluids, 1993, no. 5, pp. 2938–2959.

  11. D’yachenko, V.F., Imshennik, V.S., and Poleichik, V.V., On the motion of interstellar medium under the action of nova and supernova shells, Astron. Zh., 1969, vol. 46, no. 4, pp. 739–744.

    Google Scholar 

  12. Filipp, N.D., Oraevskii, V.N., Blaunshtein, N.Sh., and Ruzhin, Yu.Ya., Evolyutsiya iskusstvennykh plazmennykh neodnorodnostei v ionosfere Zemli (Evolution of Artificial Plasma Inhomogeneities in the Earth’s Ionosphere), Kishinev: Shtiintsa, 1986.

  13. Galeev, A.A. and Sagdeev, R.Z., Model of a shock wave in solar wind plasma, J. Eksp. Teor. Fiz., 1969, vol. 57, no. 3, pp. 1047–1053.

    Google Scholar 

  14. Golant, V.E., Zhilinskii, A.P., and Sakharov, S.A., Osnovy fiziki plazmy (Basics of Plasma Physics), Moscow: Atomizdat, 1972.

  15. Hartman, C.W. and Hammer, J.H., New type of collective acceleration, Phys. Rev. Lett., 1982, vol. 48, pp. 929–932.

  16. Hussey, T.W., Theoretical modeling of pulsed-power driven flux compression systems at the Phillips laboratory, Phillips Laboratory, High Energy Plasma Division, Report no. M87117-6008, Kirtland AFB, 1993.

  17. Kalitkin, N.N., Chislennye metody (Numerical Methods), Moscow: Nauka, 2000.

  18. Koopman, D.W. and Goforth, R.R., Collisional coupling in counterstreaming laser-produced plasmas, Phys. Fluids, 1974, vol. 17, pp. 1560–1565.

    Article  Google Scholar 

  19. Landa, P.S., Avtokolebaniya v raspredelennykh sistemakh (Self-Oscillations in Distributed Systems), Moscow: Nauka, 1983.

  20. Operatsiya “Argus” (Operation Argus), Moscow: Atomizdat, 1960.

  21. Operatsiya “Morskaya zvezda” (Operation Starfish), Moscow: Atomizdat, 1964.

  22. Osovets, S.M. and Shchedrin, N.N., Plasma loop at active induction, in Fizika plazmy i problema UTS (Plasma Physics and the Problem of Controlled Nuclear Fission), vol. 3, Moscow: Akad. Nauk SSSR, 1958.

  23. Pol’skii, V.I., Kalin, B.A., Kartsev, P.I., et al., Damage to the surface of structural materials under the action of plasma clusters, At. Energ., 1984, vol. 50, no. 2, pp. 83–88.

    Google Scholar 

  24. Repin, A.Yu. and Stupitskii, E.L., Dynamics of a toroidal plasma cluster and its interaction with an obstacle. Dynamics of a toroidal plasma cluster in vacuum, High Temp., 2004, vol. 42, no. 1, pp. 25–31.

    Google Scholar 

  25. Repin, A.Yu. and Stupitskii, E.L., Dynamics of a toroidal plasma cluster and its interaction with an obstacle. Interaction of incident and reflected flows, High Temp., 2004, vol. 42, no. 3, pp. 362–372.

    Article  Google Scholar 

  26. Repin, A.Yu., Stupitskii, E.L., and Shapranov, A.V., Dynamics of a toroidal plasma cluster and its interaction with an obstacle. Ionization and dynamic characteristics and electromagnetic radiation, High Temp., 2004, vol. 42, no. 4, pp. 523–538.

    Article  Google Scholar 

  27. Sidnev, V.V. and Skvortsov, Yu.V., Dynamics of the interaction of supersonic plasma flow with a solid target, Fiz. Plazmy, 1987, vol. 13, no. 5, pp. 632–634.

    Google Scholar 

  28. Smirnov, E.V. and Stupitskii, E.L., Numerical simulation of the effect of rarefied plasma flow on the surface of a solid, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., 2011, no. 11, pp. 102–112.

  29. Stepanov, A.E. and Sidnev, V.V., On the condition for conversion of kinetic energy of supersonic plasma flow to soft X-ray radiation, Fiz. Plazmy, 1989, vol. 5, no. 8, pp. 1000–1007.

    Google Scholar 

  30. Stupitskii, E.L., Dinamika moshchnykh impul’snykh izluchenii i plazmennykh obrazovanii (Dynamics of Powerful Pulse Emissions and Plasma Formations), Moscow: Fizmatlit, 2006a.

  31. Stupitskii, E.L., Specific features of explosive plasma flows in the near-Earth space, Geomagn. Aeron. (Engl. Transl.), 2006b, vol. 46, no. 1, pp. 23–40.

  32. Stupitskii, E.L., Lyubchenko, O.S., and Khudaverdyan, A.M., Nonequilibrium processes accompanying expansion of a high-temperature plasma bunch, Kvantovaya Elektron., 1985, vol. 12, no. 5, pp. 1038–1049.

    Google Scholar 

  33. Stupitskii, E.L. and Repin, A.Yu., Numerical simulation of the interaction of plasma bunches using the method of large particles, in Tr.VI Mezhdunarodnoi konferentsii: “Metod krupnykh chastits: teoriya i prilozheniya” (Proceedings of the VI International Conference “The Method of Large Particles: Theory and Applications”), 1996, pp. 70–82.

  34. Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii (Physics of Shockwaves and High-Temperature Hydrodynamic Phenomena), Moscow: Nauka, 2008.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Motorin or E. L. Stupitsky.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannov, S.G., Zhitlukhin, A.M., Motorin, A.A. et al. Dynamics of the Plasma Bunch at the Initial and Following Stages of Motion in a Rarefied Gas. Geomagn. Aeron. 59, 318–341 (2019). https://doi.org/10.1134/S0016793219030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219030034

Navigation