Skip to main content
Log in

Dipolarization Flux Bundles

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Localized fast plasma flows in the geomagnetic tail (bursty bulk flows, BBF, and dipolarizing flux bundles, DFB, having smaller spatial scale) which have been observed in recent years onboard CLUSTER and THEMIS spacecraft, are closely related to processes producing thin current sheets observed on the same satellites. This follows from our previous theoretical analysis and numerical simulation of processes leading to generation of thin current sheets. The theory also makes it possible to explain essential deviations in the behavior of DFB from predictions of the MHD simulation carried out in recent years by other authors. In the framework of the two-fluid model, such deviations can be understood taking into account the ion inertial drift current in a localized three-dimensional current system of DFB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Antonova, A.E., Gubar’, Yu.I., and Kropotkin, A.P., A model of spatio–temporal structure of the substorm electromagnetic disturbance and its consequences, Phys. Chem. Earth, 2000, vol. 25, nos. 1–2, pp. 43–46.

    Google Scholar 

  2. Baumjohann, W. and Roux, A., Le Contel, O., et al., Dynamics of thin current sheets: Cluster observations, Ann. Geophys., 2007, vol. 25, no. 6, pp. 1365–1389.

    Article  Google Scholar 

  3. Birn, J. and Hesse, M., The substorm current wedge in MHD simulations, J. Geophys. Res., 2013, vol. 118, pp. 3364–3376. https://doi.org/10.1002/jgra.50187

    Article  Google Scholar 

  4. Birn, J. and Hesse, M., The substorm current wedge: Further insights from MHD simulations, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 3503–3513. https://doi.org/10.1002/2014JA019863

    Article  Google Scholar 

  5. Birn, J. and Schindler, K., Thin current sheets in the magnetotail and the loss of equilibrium, J. Geophys. Res., 2002, vol. 107, no. A7, 1117. https://doi.org/10.1029/2001JA000291

    Article  Google Scholar 

  6. Birn, J., Schindler, K., and Hesse, M., Formation of thin current sheets in the magnetotail: Effects of propagating boundary deformations, J. Geophys. Res., 2003, vol. 108, no. A9, 1337. https://doi.org/10.1029/2002JA009641

    Article  Google Scholar 

  7. Birn, J., Raeder, J., Wang, Y.L., Wolf, R.A., and Hesse, M., On the propagation of bubbles in the geomagnetic tail, Ann. Geophys., 2004, vol. 22, pp. 1773–1786.

    Article  Google Scholar 

  8. Birn, J., Hesse, M., Schindler, K., and Zaharia, S., Role of entropy in magnetotail dynamics, J. Geophys. Res., 2009, vol. 114, A00D03. https://doi.org/10.1029/2008JA014015

    Article  Google Scholar 

  9. Birn, J., Nakamura, R., Panov, E.V., and Hesse, M., Bursty bulk flows and dipolarization in MHD simulations of magnetotail reconnection, J. Geophys. Res., 2011, vol. 116, A01210. https://doi.org/10.1029/2010JA016083

    Article  Google Scholar 

  10. Domrin, V.I. and Kropotkin, A.P., Forced current sheet structure, formation and evolution: Application to magnetic reconnection in the magnetosphere, Ann. Geophys., 2004, vol. 22, pp. 2547–2553. https://doi.org/10.5194/angeo-22-2547-2004

    Article  Google Scholar 

  11. Domrin, V.I. and Kropotkin, A.P., Dynamics of equilibrium upset and electromagnetic energy transformation in the geomagnetotail: A theory and simulation using particles. 3. Versions of formation of thin current sheets, Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 5, pp. 555–565.

  12. Domrin, V.I., Malova, H.V., Artemyev, A.V., and Kropotkin, A.P., Peculiarities of the formation of a thin current sheet in the Earth’s magnetosphere, Cosmic Res., 2016, vol. 54, no. 6, pp. 423–437.

    Article  Google Scholar 

  13. Gabrielse, C., Angelopoulos, V., Harris, C., Artemyev, A., Kepko, L., and Runov, A., Extensive electron transport and energization via multiple, localized dipolarizing flux bundles, J. Geophys. Res.: Space Phys., 2017, vol. 122, pp. 5059–5076. https://doi.org/10.1002/2017JA023981

    Article  Google Scholar 

  14. Hesse, M. and Birn, J., Magnetosphere–ionosphere coupling during plasmoid evolution: First results, J. Geophys. Res., 1991, vol. 96, no. A7, pp. 11513–11522.

    Article  Google Scholar 

  15. Kivelson, M.G. and Russell, C.T., Introduction to Space Physics, Cambridge: Cambridge Univ. Press, 1995.

    Google Scholar 

  16. Kropotkin, A.P., Magnetospheric substorm: Loss of the magnetoplasma equilibrium as a nonlinear dynamical bifurcation, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 2, pp. 135–141.

  17. Kropotkin, A.P., Processes in current sheets responsible for fast energy conversion in the magnetospheric collisionless plasma, 2013. http://arxiv.org/abs/1302.2795.

  18. Kropotkin, A.P. and Domrin, V.I., Theory of a thin one-dimensional current sheet in collisionless space plasma, J. Geophys. Res., 1996, vol. 101, pp. 19 893–19 902.

    Article  Google Scholar 

  19. Kropotkin, A.P. and Domrin, V.I., Kinetic thin current sheets: their formation in relation to magnetotail mesoscale turbulent dynamics, Ann. Geophys., 2009, vol. 27, no. 7, pp. 1353–1362.

    Article  Google Scholar 

  20. Kropotkin, A.P. and Domrin, V.I., Geomagnetotail dynamics: Different types of equilibriums and transitions between them, Geomagn. Aeron. (Engl. Transl.), 2009, vol. 49, no. 2, pp. 169–178.

  21. Kropotkin, A.P., Malova, H.V., and Sitnov, M.I., The self-consistent structure of a thin anisotropic current sheet, J. Geophys. Res., 1997, vol. 102, pp. 22 099–22 106.

    Article  Google Scholar 

  22. Kropotkin, A.P., Trubachev, O.O., and Schindler, K., Nonlinear Mechanisms for the Substorm Explosion in the Geomagnetic Tail, Geomagn. Aeron. (Engl. Transl.), 2002a, vol. 42, no. 3, pp. 277–285.

  23. Kropotkin, A.P., Trubachev, O.O., and Schindler, K., Substorm onset: Fast reconfiguration of the magnetotail caused by explosive growth of the turbulence level, Geomagn. Aeron. (Engl. Transl.), 2002b, vol. 42, no. 3, pp. 286–298.

  24. Kuznetsova, M.M., Hesse, M., and Winske, D., Collisionless reconnection supported by nongyrotropic pressure effects in hybrid and particle simulations, J. Geophys. Res., 2001, vol. 106A, pp. 3799–3810.

    Article  Google Scholar 

  25. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 8: Elektrodinamika sploshnykh sred (Electrodynamics of Continuous Media), Moscow: Fizmatgiz, 1982, ch. 63.

    Google Scholar 

  26. Leonovich, A.S. and Kozlov, D., Coupled guided modes in the magnetotails: Spatial structure and ballooning instability, Astrophys. Space Sci., 2014, vol. 353, pp. 9–23. https://doi.org/10.1007/s10509-014-1999-3

    Article  Google Scholar 

  27. Leonovich, A.S. and Mazur, V.A., A theory of transverse small-scale standing Alfvén waves in an axially symmetric magnetosphere, Planet. Space Sci., 1993, vol. 41, no. 9, pp. 697–717.

    Article  Google Scholar 

  28. Leonovich, A.S. and Mazur, V.A., Lineinaya teoriya MGD-kolebanii magnitosfery (Linear Theory of MHD-Oscillations in the Magnetosphere), Moscow: Fizmatlit, 2016.

  29. Lui, A.T.Y., Dipolarization fronts and magnetic flux transport, Geosci. Lett., 2015, vol. 2, p. 15. https://doi.org/10.1186/s40562-015-0032-1

    Article  Google Scholar 

  30. Liu, J., Angelopoulos, V., Runov, A., and Zhou, X.-Z., On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 2000–2020. https://doi.org/10.1002/jgra.50092

    Article  Google Scholar 

  31. Liu, J., Angelopoulos, V., Zhou, X.-Z., and Runov, A., Magnetic flux transport by dipolarizing flux bundles, J. Geophys. Res.: Space Phys., 2014, vol. 119, pp. 909–926. https://doi.org/10.1002/2013JA019395

    Article  Google Scholar 

  32. Nakamura, R., Baumjohann, W., Runov, A., and Asano, Y., Thin current sheets in the magnetotail observed by Cluster, Space Sci. Rev., 2006, vol. 122, nos. 1–4, pp. 29–38.

    Article  Google Scholar 

  33. Runov, A., Sergeev, V.A., Nakamura, R., et al., Local structure of the magnetotail current sheet: 2001 Cluster observations, Ann. Geophys., 2006, vol. 24, pp. 247–262.

    Article  Google Scholar 

  34. Runov, A., Angelopoulos, V., Zhou, X.-Z., Zhang, X.J., Li, S., Plaschke, F., and Bonnell, J., A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet, J. Geophys. Res., 2011, vol. 116, A05216. https://doi.org/10.1029/2010JA016316

    Article  Google Scholar 

  35. Sergeev, V.A., Angelopoulos, V., Apatenkov, S., Bonnell, J., Ergun, R., Nakamura, R., McFadden, J.P., Larson, D., and Runov, A., Kinetic structure of the sharp injection/dipolarization front in the flow braking region, Geophys. Res. Lett., 2009, vol. 36, L21105. https://doi.org/10.1029/2009GL040658

    Article  Google Scholar 

  36. Sitnov, M.I., Zelenyi, L.M., Malova, H.V., and Sharma, A.S., Thin current sheet embedded within a thicker plasma sheet: Self-consistent theory, J. Geophys. Res., 2000, vol. 105, no. A6, pp. 13029–13043.

    Article  Google Scholar 

  37. Wiltberger, M., Merkin, V., Lyon, J.G., and Ohtani, S., High-resolution global magnetohydrodynamic simulation of bursty bulk flows, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 4555–4566. https://doi.org/10.1002/2015JA021080

    Article  Google Scholar 

  38. Zelenyi, L.M., Kropotkin, A.P., Domrin, V.I., Artemyev, A.V., Malova, H.V., and Popov, V.Yu., Tearing mode in thin current sheets of the Earth’s magnetosphere: A scenario of transition to unstable state, Cosmic Res., 2009, vol. 47, no. 5, pp. 352–360.

    Article  Google Scholar 

  39. Zhou, X.Z., Angelopoulos, V., Runov, A., et al., Thin current sheet in the substorm late growth phase: modeling of THEMIS observations, J. Geophys. Res.: Space Phys., 2009, vol. 114, A03223. https://doi.org/10.1029/2008JA013777

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Kropotkin.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropotkin, A.P. Dipolarization Flux Bundles. Geomagn. Aeron. 59, 162–169 (2019). https://doi.org/10.1134/S0016793219020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793219020099

Navigation