Skip to main content
Log in

Time Evolution of the Energy Spectra of Accelerated Electrons and Hard X-Rays from Local Sources of Solar Flares

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

Modern observations of solar flares in hard X-rays are carried out with a high spatial resolution of ~2–4 arcsec with the RHESSI satellite. In this way one can identify, at least for powerful events, the local spatial structure of hard X-ray sources. The structure of flare X2.8 SOL 2013-5-13T15:50, as detected from RHESSI data and from observations made using Nobeyama and SDO, includes three bright local hard X-ray sources: one at the loop top and two at the footpoints of the flaring loop. The goal of this work is to obtain the energy spectra of hard X-rays, determine the spectrum of delays in hard X-ray radiation, reconstruct the spectra of accelerated electrons for each local source, and determine the parameters of the electron beam and flare plasma. The electron spectra are reconstructed by the forward-fitting method and the Tikhonov regularized inversion. The results of the analysis suggest that explaining the bright hard X-ray source high in the corona requires, simultaneously, a high magnetic field gradient in the footpoints with Bmax/B0 > 7 (in a symmetrical configuration), a background plasma density of n0 > 1010 cm–3, and the presence of turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Charikov, Y.E. and Shabalin, A.N., Influence of magnetic turbulence on the propagation of accelerated electrons and hard X-ray brightness distribution in solar flares, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 8, pp. 1104–1111.

  2. Charikov, Yu.E. and Shabalin, A.N., Hard X-Ray generation in the turbulent plasma of solar flares, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 8, pp. 1068–1074.

  3. Charikov, Yu.E., Globina, V.I., Shabalin, A.N., and Elfimova, E.P., Localization of electron acceleration in solar flares based on the spectrum analysis of hard X-ray time delays, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no. 7, pp. 1000–1007.

  4. Charikov, Y.E., Shabalin, A.N., and Kuznetsov, S.A., Modeling of the physical processes based on hard X‑Ray and radio analysis of the flare of 10 November 2002, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 8, pp. 1009–1017.

  5. Holman, G.D., Aschwanden, M.J., Aurass, H., Battaglia, M., Grigis, P.C., Kontar, E.P., Liu, W., Saint-Hilaire, P., and Zharkova, V.V., Implications of X-ray observations for electron acceleration and propagation in solar flares, Space Sci. Rev., 2011, vol. 159, nos. 1–4, pp. 107–166.

    Article  Google Scholar 

  6. Hoyng, P., Duuveman, A., Machado, M.E., Rust, D.M., and Svestka, Z., Boelee, A., de Jager, C., Frost, K.J., Lafleur, H., Simnett, G.M., van Beek, H.F., and Woodgate, B.E., Origin and location of the hard X-ray emission in a two-ribbon flare, Astrophys. J., 1981, vol. 246, pp. 155–159.

    Article  Google Scholar 

  7. https://hesperia.gsfc.nasa.gov/hessidata/dbase/hessi_ flare_list.txt.

  8. Kosugi, T., Makishima, K., Murakami, T., Sakao, T., Dotani, T., Inda, M., Kai, K., Masuda, S., Nakajima, H., Ogawara, Y., Sawa, M., and Shibasaki, K., The Hard X-ray Telescope (HXT) for the SOLAR-A mission, in The Yohkoh (Solar-A) Mission, Dordrecht: Springer, 1991, pp. 17–36.

    Google Scholar 

  9. Lemen, J.R., Title, A.M., Akin, C., et al., The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 2012, vol. 275, nos. 1–2, pp. 17–40.

    Article  Google Scholar 

  10. Lin, R.P., Dennis, B.R., Hurford, G.J., et al., The Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI), Sol. Phys., 2002, nos. 1–2, pp. 3–32.

  11. Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., and Ogawa, Y., A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection, Nature, 1994, vol. 371, pp. 495–497.

    Article  Google Scholar 

  12. Nakajima, H., Nishio, M., Enome, S., et al., The Nobeyama radioheliograph, Proc. IEEE, 1994, vol. 82, no. 5, pp. 705–713.

    Article  Google Scholar 

  13. Orwig, L.E., Erost, K.J., and Dennis, B.R., The hard X-ray burst spectrometer on the solar maximum mission, Sol. Phys., 1980, vol. 65, pp. 25–37.

    Article  Google Scholar 

  14. Reznikova, V.E., Melnikov, V.F., Shibasaki, K., Gorbikov, S.P., Pyatakov, N.P., Myagkova, I.N., and Ji, H., 2002 August 24 limb flare loop: Dynamics of microwave brightness distribution, Astrophys. J., 2009, vol. 697, no. 1, pp. 735–746.

    Article  Google Scholar 

  15. Tikhonov, A.N. and Arsenin, V.Ya., Metody resheniya nekorrektnykh zadach (Methods for Solving Incorrectly Posed Problems), Moscow: Nauka, 1979.

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-12-01378.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Charikov.

Additional information

Translated by A. Kobkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charikov, Y.E., Shabalin, A.N. & Ovchinnikova, E.P. Time Evolution of the Energy Spectra of Accelerated Electrons and Hard X-Rays from Local Sources of Solar Flares. Geomagn. Aeron. 58, 1001–1007 (2018). https://doi.org/10.1134/S0016793218070058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793218070058

Navigation