Skip to main content
Log in

Use of the physically based modeling to choose an adequate method for determining the plasmapause position

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

From the data on the cold plasma measurements onboard the INTERBALL-1 spacecraft (1995–2000), the plasmapause positions determined from the most frequently used formal criterion—a fivefold or higher decrease in plasma density with an increase in the L-shell by 0.5—and visually from the measured energy spectra of thermal protons have been analyzed and compared. The difference in the results of the both empiric techniques makes it possible to estimate the thickness of the boundary layer of the plasmasphere. The model of the Earth’s plasmasphere developed earlier by the authors (Verigin et al., 2012; Kotova et al., 2015) based on the theoretical expressions makes it possible to reconstruct the plasma distribution throughout the plasmasphere from the measurements along a single pass of the orbiter and to find the plasmapause position defined as the last closed stream line. Comparison of the plasmapause position obtained with empirical techniques to the position of this boundary calculated with physically based models of the plasma distribution in the plasmasphere has shown that the modeled position of the plasmapause approximately coincides with that determined from the formal criterion described above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bezrukikh, V.V., Barabanov, N.A., Venediktov, Yu. I., et al., Investigation of low-energy plasma in the Earth’s magnetosphere onboard the Tail and Auroral Probes: Instrumentation and preliminary results, Comic Res., 1998, vol. 36, no. 1, pp. 30–38.

    Google Scholar 

  • Brice, N.M, Bulk motion of the magnetosphere, J. Geophys. Res., 1967, vol. 72, pp. 5193–5211.

    Article  Google Scholar 

  • Carpenter, D.L, Whistler evidence of a “knee” in the magnetospheric ionization density profile, J. Geophys. Res., 1963, vol. 68, pp. 1675–1682.

    Article  Google Scholar 

  • Carpenter, D.L, Whistler studies of the plasmapause in the magnetosphere, I. Temporal variations in the position of the knee and some evidence on plasma motions near the knee, J. Geophys. Res., 1966, vol. 71, pp. 693–709.

    Article  Google Scholar 

  • Carpenter, D.L. and Anderson, R.R, An ISEE/whistler model of equatorial electron density in the magnetosphere, J. Geophys. Res., 1992, vol. 97, pp. 1097–1108. doi 10.1029/91JA01548

    Article  Google Scholar 

  • Carpenter, D.L. and Lemaire, J, The plasmasphere boundary layer, Ann. Geophys., 2004, vol. 22, pp. 4291–4298.

    Article  Google Scholar 

  • Chappell, C.R., Harris, K.K., and Sharp, G.W., A study of the influence of magnetic activity on the location of the plasmapause as measured by OGO 5, J. Geophys. Res., 1970, vol. 75, pp. 50–56. doi 10.1029/JA075i001p00050

  • Darrouzet, F., Pierrard, V., Benck, S., Lointier, G., Cabrera, J., Borremans, K., Ganushkina, N.Yu., and De Keyser, J, Links between the plasmapause and the radiation belt boundaries as observed by the instruments CIS, RAPID and WHISPER onboard Cluster, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 4176–4188. doi 10.1002/jgra.50239

    Google Scholar 

  • Doe, R.A., Moldwin, M.B., and Mendillo, M, Plasmapause morphology determined from an empirical ionospheric convection model, J. Geophys. Res., 1992, vol. 97, no. A2, pp. 1151–1156.

    Article  Google Scholar 

  • Goldstein, J., Spiro, R.W., Reiff, P.H., Wolf, R.A., Sandel, B.R., Freeman, J.W., and Lambour, R.L., IMFdriven overshielding electric field and the origin of the plasmaspheric shoulder of May 24, 2000, Geophys. Res. Lett., 2002, vol. 29, no. 16, pp. 66–1–66-4. doi 10.1029/2001GL014534

    Article  Google Scholar 

  • Goldstein, J., Spasojevic, M., Reiff, P.H., Sandel, B.R., Forrester, W.T., Gallagher, D.L., and Reinisch, B.W, Identifying the plasmapause in IMAGE EUV data using IMAGE RPI in situ steep density gradients, J. Geophys. Res., 2003, vol. 108, no. A4, 1147. doi 10.1029/2002JA009475

    Article  Google Scholar 

  • Gringauz, K.I., Bezrukikh, V.V., Ozerov, V.D., and Rybchinskii, R.E, Study of the interplanetary ionizing gas, energetic electrons, and corpuscular solar radiation using three-electrode traps of charged particles in the second soviet space rocket, Dokl. Akad. Nauk SSSR, 1960, vol. 131, pp. 1302–1304.

    Google Scholar 

  • Katus, R.M., Gallagher, D.L., Liemohn, M.W., Keesee, A.M., and Sarno-Smith, L.K, Statistical stormtime examination of MLT-dependent plasmapause location derived from IMAGE EUV, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 5545–5559. doi 10.1002/2015JA021225

    Article  Google Scholar 

  • Khazanov, G.V., Rasmussen, C.E., Konikov, Yu.V., Gombosi, T.I., and Nagy, A.F, Effect of magnetospheric convection on thermal plasma in the inner magnetosphere, J. Geophys. Res., 1994, vol. 99, no. A4, pp. 5923–5934.

    Article  Google Scholar 

  • Klimov, S.I., Bezrukikh, V.V., Lezhen, L.A., Kotova, G.A., Petrukovich, A.A., and Savin, S.P., The variation of spacecraft potential on high elliptical orbit. The result of INTERBALL project (1995–2000), in Spacecraft Charging Technology: Proceedings of the Seventh International Conference, April 23–27, 2001, Harris, R.A., Ed., Noordwijk, the Netherlands: European Space Agency,2001, ESA SP-476, p. 261.

    Google Scholar 

  • Kotova, G.A, The Earth’s plasmasphere: State of studies (a review), Geomagn. Aeron. (Engl. Transl.), 2007, vol. 47, no. 4, pp. 409–422.

    Article  Google Scholar 

  • Kotova, G.A., Bezrukikh, V.V., Verigin, M.I., and Legen, L.A., INTERBALL-1/ALPHA-3 cold plasma measurements in the evening plasmasphere: Quiet and disturbed magnetic conditions, Adv. Space Res., 2002, vol. 30, no. 10, pp. 2313–2318.

    Article  Google Scholar 

  • Kotova, G.A., Verigin, M.I., and Bezrukikh, V.V, The effect of the Earth’s optical shadow on thermal plasma measurements in the plasmasphere, J. Atmos. Sol.-Terr. Phys., 2014, vol. 120, pp. 9–14.

    Article  Google Scholar 

  • Kotova, G.A., Verigin, M.I., and Bezrukikh, V.V, Physicsbased reconstruction of the 3-D density distribution in the entire quiet time plasmasphere from measurements along a single pass of an orbiter, J. Geophys. Res.: Space Phys., 2015, vol. 120, pp. 7512–7521. doi 10.1002/2015JA021281

    Article  Google Scholar 

  • Laakso, H. and Jarva, M, Evolution of the plasmapause position, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, pp. 1171–1178.

    Article  Google Scholar 

  • Larsen, B.A., Klumpar, D.M., and Gurgiolo, C, Correlation between plasmapause position and solar wind parameters, J. Atmos. Sol.-Terr. Phys., 2007, vol. 69, pp. 334–340. doi 10.1016/j.jastp.2006.06.017

    Article  Google Scholar 

  • Lemaire, J, Rotating ion-exospheres, Planet. Space Sci., 1976, vol. 24, pp. 975–985.

    Article  Google Scholar 

  • Lemaire, J.F. and Gringauz, K.I., The Earth’s Plasmasphere, Cambridge: Cambridge University Press, 1998.

    Book  Google Scholar 

  • Lemaire, J. and Scherer, M, Exospheric models of the topside ionosphere, Space Sci. Rev., 1974, vol. 15, pp. 591–640.

    Article  Google Scholar 

  • Moldwin, M.B., Downward, L., Rassoul, H.K., Amin, R., and Anderson, R.R., A new model of the location of the plasmapause: CRRES results, J. Geophys. Res., 2002, vol. 107, no. A11. 10.102912001JA009211

  • Nishida, A, Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail, J. Geophys. Res., 1966, vol. 71, pp. 5669–5679.

    Google Scholar 

  • Pierrard, V. and Lemaire, J, Exospheric model of the plasmasphere, J. Atmos. Sol.-Terr. Phys., 2001, vol. 63, pp. 1261–1265.

    Article  Google Scholar 

  • Pierrard, V. and Stegen, K., A three-dimensional dynamic kinetic model of the plasmasphere, J. Geophys. Res., 2008, vol. 113, A10209. doi 10.1029/2008JA013060

    Article  Google Scholar 

  • Pierrard, V., Khazanov, G.V., Cabrera, J., and Lemaire, J, Influence of the convection electric field models on predicted plasmapause positions during magnetic storms, J. Geophys. Res., 2008, vol. 113, A08212. doi 10.1029/2007JA012612

    Google Scholar 

  • Verigin, M.I., Kotova, G.A., Bezrukikh, V.V., and Aken’tieva, O.S, Restoration of the proton density distribution in the Earth’s plasmasphere from measurements along the INTERBALL-1 satellite orbit, Geomagn. Aeron. (Engl. Transl.), 2012, vol. 52, no. 6, pp. 725–729.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Kotova.

Additional information

Original Russian Text © G.A. Kotova, M.I. Verigin, V.V. Bezrukikh, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 4, pp. 409–417.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotova, G.A., Verigin, M.I. & Bezrukikh, V.V. Use of the physically based modeling to choose an adequate method for determining the plasmapause position. Geomagn. Aeron. 57, 375–383 (2017). https://doi.org/10.1134/S0016793217040107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217040107

Navigation