Skip to main content
Log in

22-year cycle in the frequency of aurora occurrence in XIX century: Latitudinal effects

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The 22-year variation in the frequency of aurora occurrence is found through an analysis of data of the Russian network of meteorological stations from 1837–1909. This variation is obtained in a form of asymmetry between even and odd solar cycles. We found that the nature of the 22-year variation depends on the latitude of the observation station. The annual number N of midlatitude auroras (geomagnetic latitudes Φ < 56°) for about three years at the end of the descending part of solar cycles is larger for the even cycles than for the odd. For high-latitude auroras (Φ ≥ 56°), the pattern is opposite: at the descending part of the solar cycle, N is larger in the odd cycles than in the even. For the high-latitude sector, asymmetry of the polar sun cycles (the period between two magnetic field reversals) is clearly observed: an increased N is observed during the whole odd polar cycle (which starts approximately at the maximum of the odd Schwabe cycle) as compared to the even cycle. Extrapolation of the modern picture of alternation of the sign of the global solar magnetic field back in time leads to the conclusion that the most geoeffective polar cycles in cycles 8–14 were those in which the polar magnetic field in the northen hemisphere was negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abunina, M., Abunin, A., Belov, A., Eroshenko, E., Gaidash, S., Oleneva, V., and Yanke, V., On the influence of the coronal hole latitude and polarity on the geomagnetic activity and cosmic ray variations, in Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), 30 July–6 August, 2015, The Hague, The Netherlands, 2015, pp. 1–7.

    Google Scholar 

  • Angot, A., The Aurora Borealis, London: K. Paul, Trench, Trübner, 1896.

    Google Scholar 

  • Apostolov, E.M., Altadill, D., and Todorova, M., The 22-year cycle in the geomagnetic 27-day recurrences reflecting on the F2-layer ionization, Ann. Geophys., 2004, vol. 22, pp. 1171–1176.

    Article  Google Scholar 

  • Babcock, H.W., The topology of the Sun’s magnetic field and the 22-year cycle, Astrophys. J., 1961, vol. 133, pp. 527–587.

    Article  Google Scholar 

  • Bothmer, V. and Rust, D.M., The field configuration of magnetic clouds and solar cyclem in Coronal Mass Ejections, Crooker, N., Joselyn, J., and Feynman, J., Eds., Washington, D.C.: AGU, 1997, vol. 99, pp. 139–146.

    Google Scholar 

  • Bothmer, V. and Schwenn, R., The structure and origin of magnetic clouds in the solar wind, Ann. Geophys., 1998, vol. 16, pp. 1–24.

    Article  Google Scholar 

  • Bravo, S. and González-Esparza, J.A., The north–south asymmetry of the solar and heliospheric magnetic field during activity minima, Geophys. Res. Lett., 2000, vol. 27, no. 6, pp. 847–849.

    Article  Google Scholar 

  • Chernosky, E.J., Double sunspot-cycle variation in terrestrial magnetic activity 1884–1963, J. Geophys. Res., 1966, vol. 71, no. 3, pp. 965–974.

    Article  Google Scholar 

  • Cliver, E.W., Boriakoff, V., and Bounar, K.H., The 22-year cycle of geomagnetic and solar wind activity, J. Geophys. Res., 1996, vol. 101, no. A12, pp. 27091–27109.

    Google Scholar 

  • Du, Z.L., The correlation between solar and geomagnetic activity. Part 3: An integral response model, Ann. Geophys., 2011, vol. 29, pp. 1005–1018. doi 10.5194/angeo_29_1005_2011

    Article  Google Scholar 

  • Echer, E., González, W.D., González, A.L.C., Prestes, A., Vieira, L.E.A., and dal Lago, A., Guarnieri, F.L., and Schuch, N.J., Long-term correlation between solar and geomagnetic activity, J. Atmos. Sol.–Terr. Phys., 2004, vol. 66, pp. 1019–1025.

    Article  Google Scholar 

  • Feldstein, Y.I., Livshits, M.A., and Valchuk, T.E., Geomagnetic activity and high-latitude magnetic field of the Sun, Nature, 1979, vol. 278, pp. 241–243.

    Article  Google Scholar 

  • Gnevyshev, M. and Ohl, A.I., On the 22-year cycle of solar activity, Astron. Zh., 1948, vol. 25, no. 1, pp. 18–20.

    Google Scholar 

  • González, A., González, W., and Dutra, S., Periodic variations in the geomagnetic activity: A study based on the Ap index, J. Geophys. Res., 1993, vol. 98, pp. 9215–9231.

    Article  Google Scholar 

  • González, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., and Vasyliunas, V.M., What is a geomagnetic storm?, J. Geophys. Res., 1994, vol. 99, pp. 5771–5792.

    Article  Google Scholar 

  • Hale, G.E. and Nicholsonn, S.B., The law of sun-spot polarity, Astrophys. J., 1925, vol. 62, pp. 270–300.

    Article  Google Scholar 

  • Hoeksema, J.T., Extending the Sun’s magnetic field through the three dimensional heliosphere, Adv. Space Res., 1989, vol. 94, pp. 141–152.

    Article  Google Scholar 

  • Hoeksema, J.T., Wilcox, J.M., and Scherrer, P.H., The structure of the heliospheric current sheet: 1978–1982, J. Geophys. Res., 1983, vol. 88, pp. 9910–9918.

    Article  Google Scholar 

  • Křivský, L. and Pejml, K., Solar activity, aurorae and climate in Central Europe in the last 1000 years, Publ. Astron. Inst. Czech. Acad. Sci., 1985, vol. 33, no. 606, pp. 77–151.

    Google Scholar 

  • Legrand, J.P. and Simon, P.A., A two component solar cycle, Sol. Phys., 1991, vol. 131, pp. 187–209.

    Article  Google Scholar 

  • Libin, I.Ya., Pérez-Pereza, A.J., Yanke, V.G., Dorman, L.I., and Treiger, E.M., Helioclimatolgy: Nonterrestrial sources of the Earth’s climate, Usp. Sovrem. Estestvozn., 2012, no. 7, pp. 67–70.

    Google Scholar 

  • Liritzis, Y. and Petropoulos, B., Latitude dependence of auroral frequency in relation to solar–terrestrial and interplanetary parameters, Earth, Moon Planets, 1987, vol. 39, no. 1, pp. 75–91.

    Article  Google Scholar 

  • Lockwood, M., Stamper, R., and Wild, M.N., A doubling of the Sun’s coronal magnetic field during the last 100 years, Nature, 1999, vol. 399, pp. 437–445.

    Article  Google Scholar 

  • Love, J.J., Secular trends in storm-level geomagnetic activity, Ann. Geophys., 2011, vol. 29, pp. 251–262. doi 10.5194/angeo-29-251-2011

    Article  Google Scholar 

  • Makarov, V.I. and Sivaraman, K.R., The large-scale magnetic field in the global solar cycle: Observational aspects, Sol. Phys., 1989, vol. 123, pp. 367–380.

    Article  Google Scholar 

  • Makarov, V.I. and Tlatov, A.G., The large-scale solar magnetic field and 11-year activity cycles, Astron. Rep., 2000, vol. 77, no. 11, pp. 759–764.

    Article  Google Scholar 

  • Makarov, V.I., Makarova, V.V., Tlatov, A.G., Callebaut, D.K., and Shivaraman, K.R., Polar activity and magnetic field reversal in current solar cycle 23, in Proceedings of the First Solar and Space Weather Euroconference, 2000, ESA SP-463, pp. 367–370.

    Google Scholar 

  • Makarov, V.I., Tlatov, A.G., Callebaut, D.K., and Obridko, V.N., Increase of the magnetic flux from polar zones of the Sun in the last 120 years, Sol. Phys., 2002, vol. 206, pp. 383–399.

    Article  Google Scholar 

  • Mulligan, T., Russell, C.T., and Luhmann, J.G., Solar cycle evolution of the structure of magnetic clouds in the inner heliosphere, Geophys. Res. Lett., 1998, vol. 25, pp. 2959–2963.

    Article  Google Scholar 

  • Mulligan, T., Russell, C.T., and Luhmann, J.G., Interplanetary magnetic clouds: statistical patterns and radial variations, Adv. Space Res., 2000, vol. 26, pp. 801–806.

    Article  Google Scholar 

  • Nagovitsyn, Yu.A., Nagovitsyna, E.Yu., and Makarova, V.V., The Gnevyshev–Ohl rule for physical parameters of the solar magnetic field: The 400-year interval, Astron. Lett., 2009, vol. 35, no. 8, pp. 564–571.

    Article  Google Scholar 

  • Ptitsyna, N.G., Tyasto, M.I., and Khrapov, B.A., Variations in the occurrence frequency of aurora in 1837–1900 from data of the Russian network of meteorological observatories, Geomagn. Aeron. (Engl. Transl.), 2015, vol. 55, no 5, pp. 679–687.

    Google Scholar 

  • Rosenberg, R.L. and Coleman, P.J., Heliographic latitude dependence of the dominant polarity of the interplanetary magnetic field, J. Geophys. Res., 1969, vol. 74, no. 24, pp. 5611–5622. doi 10.1029/JA074i024p05611

    Article  Google Scholar 

  • Russell, C.T., On the possibility of delivering interplanetary and solar parameters from geomagnetic records, Sol. Phys., 1973, vol. 42, pp. 259–269.

    Article  Google Scholar 

  • Russel, C.T., On the heliographic latitude dependence of the interplanetary magnetic field as deduced from the 22-year cycle of geomagnetic activity, Geophys. Res. Lett., 1974, vol. 1, pp. 11–12.

    Article  Google Scholar 

  • Russell, C.T. and McPherron, R.L., Semiannual variation of geomagnetic activity, J. Geophys. Res., 1973, vol. 78, no. 1, pp. 92–108.

    Article  Google Scholar 

  • Shnirman, M.G., Le Mouel, J.-L., and Blanter, E.M., The 27-day and 22-year cycles in solar and geomagnetic activity, Sol. Phys., 2009, vol. 258, pp. 167–179. doi 10.1007/s11207-009-9395-9

    Article  Google Scholar 

  • Silverman, S.M., Secular variation of the aurora for the past 500 years, Rev. Geophys., 1992, vol. 30, no. 4, pp. 333–351.

    Article  Google Scholar 

  • Simon, P.A. and Legrand, J.P., Solar cycle and geomagnetic activity: A review for geophysicists. Part 2: The solar sources of geomagnetic activity and their links with sunspot cycle activity, Ann. Geophys., 1989, vol. 7, pp. 579–594.

    Google Scholar 

  • Svalgaard, L., Geomagnetic activity: Dependence on solar wind parameters, in Skylab Workshop Monograph on Coronal Holes, Zirker, J.B., Ed., New York: Columbia Univ. Press, 1977, Ch. 9, pp. 371–441.

    Google Scholar 

  • Tlatov, A.G., Long-term variations in the rotation of the solar corona, Astron. Rep., 2006a, vol. 50, no. 4, pp. 325–332.

    Google Scholar 

  • Tlatov, A.G., The 22-year cycle of solar rotation, in Tr. konf. “Eksperimental’nye i teoreticheskie issledovaniya osnov prognozirovaniya geliogeofizicheskoi aktivnosti”, IZMIRAN, Troitsk, 1–15 oktyabrya 2005 g. (Proc. of the Conference “Experimental and Theoretical Studies of the Basics of the Forecast of Heliogeophysical Activity”, IZMIRAN, Troitsk, October 1–15, 2005), Moscow: GAO RAN, 2006b, pp. 313–322.

    Google Scholar 

  • Tromholt, S., Om nordlysets perioder, in Meteorologisk Årbog for 1880, Danske Meteorologiske Institut; København, 1881, pp. 1–60.

    Google Scholar 

  • Tsurutani, B.T., González, W.D., Tong, F., and Tu, Lee, Y., Great magnetic storms, Geophys. Res. Lett., 1992, vol. 19, pp. 73–76.

    Article  Google Scholar 

  • Tsurutani, B., González, W., González, A.L.C., et al., Corotating solar wind streams and recurrent geomagnetic activity: a review, J. Geophys. Res., 2006, vol. 111, A07S01.

    Google Scholar 

  • Val’chuk, T.E., Livshits, M.A., and Fel’dshtein, Ya.I., Sounding of the high-latitude solar magnetic field by the geomagnetic field, Pis’ma Astron. Zh., 1978, vol. 4, no. 2, pp. 515–519.

    Google Scholar 

  • Vásquez, M., Vaquero, J.M., and Gallego, M.C., Longterm spatial and temporal variations of aurora borealis events in the period 1700–1905, Sol. Phys., 2014, vol. 289, no. 5, pp. 1843–1861.

    Article  Google Scholar 

  • Vernova, E.S., Tyasto, M.I., and Baranov, D.G., Photospheric magnetic field: Relationship between N–S asymmetry and flux imbalance, Sol. Phys., 2014, vol. 289, pp. 2845–2865.

    Article  Google Scholar 

  • Webb, D.F., Davis, J.M., and McIntosh, P.S., Observations of the reappearance of polar coronal holes and the reversal of the polar magnetic field, Sol. Phys., 1984, vol. 92, pp. 109–132.

    Article  Google Scholar 

  • Zaretskii, N.S., Some regularities in the 22-year cycle of geomagnetic activity, in Byul. NTI. Probl. Kosmofiz. Aeron. (Bulletin of Scientific and Technical Information, Problems in Space Physics and Aeronomy), Yakutsk: YaFSOAN SSSR, 1980, pp. 22–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Ptitsyna.

Additional information

Original Russian Text © N.G. Ptitsyna, M.I. Tyasto, B.A. Khrapov, 2017, published in Geomagnetizm i Aeronomiya, 2017, Vol. 57, No. 2, pp. 208–216.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptitsyna, N.G., Tyasto, M.I. & Khrapov, B.A. 22-year cycle in the frequency of aurora occurrence in XIX century: Latitudinal effects. Geomagn. Aeron. 57, 190–198 (2017). https://doi.org/10.1134/S0016793217020116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793217020116

Navigation