Skip to main content
Log in

Carbonate–Silicate–Sulfide Polyphase Inclusion in Diamond from the Komsomolskaya Kimberlite Pipe, Yakutia

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

An aragonite inclusion in natural diamond was identified using techniques of transmission electron microscopy, electron microdiffraction, and microprobe analysis. The inclusion is hosted in a colorless octahedral diamond crystal from the Komslomolskaya pipe in Yakutia. The diamond crystal shows a zoned distribution of its admixtures and defects. The structure parameters of the inclusion (∠[001]/[201] = 66° and certain lattice spacings) correspond to the calculated parameters of the orthorhombic unit cell of a Ca carbonate polymorph. The aragonite inclusion contains admixtures of MgO (0.81), MnO (0.58), and FeO (0.13 wt %). The find of a syngenetic aragonite inclusion in diamond is unique and proves that diamond can be formed in carbonatized mantle peridotite at depths of at least 300 km. The inclusion hosts identifiable microphases of Ni-rich sulfides (37–41 wt % Ni), titanite, hydrous silicate, magnetite, and fluid. This association indicates that the diamond and aragonite crystallized from a carbonate–silicate–sulfide melt or highdensity fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. M. Antao and I. Hassan, “Orthorhombic structure of CaCO3, SrCO3, PbCO3 and BaCO3: linear structural trends,” Can. Mineral. 47 (5), pp. 1245–1255 (2009).

    Article  Google Scholar 

  • F. E. Brenker, C. Vollmer, L. Vincze, B. Vekemans, A. Szymanski, K. Janssens, I. Szaloki, L. Nasdala, W. Joswig, and F. Kaminsky, “Carbonates from the lower part of transition zone or even the lower mantle,” Earth Planet. Sci. Lett. 260, 1–9 (2007).

    Article  Google Scholar 

  • G. P. Bulanova and L. P. Pavlova, “tAssemblage of magnetite peridotite in diamond from the Mir Pipe,” Dokl. Akad. Nauk SSSR 295 (6), 1452-1456.

  • A. Buob, R. W. Luth, M. W. Schmidt, and P. Ulmer, “Experiments on CaCO3–MgCO3 solid solutions at high pressure and temperature,” Am. Mineral. 91 (2-3), 435–440 (2006).

    Article  Google Scholar 

  • J. B. Dawson, “A review of the geology of kimberlite,” in Ultramafic and Related Rocks, Ed. by P. J. Wyllie (Wiley, New York, 1967), pp. 269–278.

    Google Scholar 

  • E. S. Efimova, N. V. Sobolev, and L. N. Pospelova, “Sulfide inclusions in diamonds and peculiarities of their paragenesis, Zap. Vsesoyuz. Mineral. O-va 112 (3), 300–310 (1983).

    Google Scholar 

  • V. K. Garanin and G. P. Kudryavtseva, “Mineralogy of diamond with inclusions from Yakutian kimberlites,” Izv. Vyssh. Uchebn. Zaved. Geol. Razvedka, No. 2, 48–56 (1991).

    Google Scholar 

  • B. Harte, “Diamond formation in the deep mantle: the record of mineral inclusions and their distribution in relation to mantle dehydration zones,” Mineral. Mag. 74 (2), 189–215 (2010).

    Article  Google Scholar 

  • W. Joswig, T. Stachel, J. W. Harris, W. H. Baur, and G. P. Brey, “New Ca-silicate inclusions in diamonds–tracers from the lower mantle,” Earth Planet. Sci. Lett. 173 (1), 1–6 (1999).

    Article  Google Scholar 

  • F. V. Kaminsky, O. D. Zakharchenko, R. M. Davies, W. L. Griffin, G. K. Khachatryan-Blinova, and A. A. Shiryaev, “Superdeep diamonds from the Juina area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140, 734–753 (2001).

    Article  Google Scholar 

  • F. V. Kaminsky R. Wirth, and A. Schreiber, “Carbonatitic inclusions in deep mantle diamond from Juina, Brazil: new minerals in the carbonate-halide association,” Can. Mineral. 51 (5), 669–688 (2013).

    Article  Google Scholar 

  • D. M. Kerrick and J. A. D. Connolly “Subduction of ophicarbonates and recycling of CO2 and H2O,” Geology 26 (4), 375–378 (1998).

    Article  Google Scholar 

  • O. Klein-BenDavid, D. G. Pearson, G. M. Nowell, C. Ottley, J. C. R. McNeill, A. Logvinova, and N. Sobolev, “The sources and time-integrated evolution of diamond-forming fluids–Trace elements and isotopic evidence,” Geochim. Cosmochim. Acta, 125, 146–169 (2014).

    Article  Google Scholar 

  • O. Klein-BenDavid, A. M. Logvinova, M. Schrauder, Z. V. Spetius, Y. Weiss, E. H. Hauri, F. V. Kaminsky, N. V. Sobolev, and O. Navon, “High-Mg carbonatitic microinclusions in some Yakutian diamonds- a new type of diamond-forming fluid,” Lithos 112S, 648–659 (2009).

    Article  Google Scholar 

  • O. Klein-BenDavid, E. S. Izraeli, E. Hauri, and O. Navon “Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids,” Geochim. Cosmochim. Acta 71, 723–724 (2007).

    Article  Google Scholar 

  • I. Leost, T. Stachel, G. P. Brey, J. W. Harris, and I. D. Ryabchikov, “Diamond formation and source carbonation: mineral associations in diamonds from Namibia,” Contrib. Mineral. Petrol. 145 (1), 15–24 (2003).

    Article  Google Scholar 

  • K. D. Litasov and E. Ohtani, “Solidus and phase relations of carbonated peridotite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to the lower mantle depths,” Phys. Earth Planet. Inter. 177, 46–58 (2009).

    Article  Google Scholar 

  • K. D. Litasov and E. Ohtani, “The solidus of carbonated eclogite in the system CaO–Al2O3–MgO–SiO2–Na2O–CO2 to 32 GPa and carbonatite liquid in the deep mantle,” Earth Planet. Sci. Lett. 295, 115–126 (2010).

    Article  Google Scholar 

  • K. D. Litasov, A. F. Shatskiy, P. N. Gavryushkin, E. Altyna, A. E. Bekhtenova, P. I. Dorogokupets, S. Boris, B. S. Danilov, Yu. Higo, T. Abdirash, A.T. Akilbekov, M. Talgat, and T. M. Inerbaev, “P-V-T equation of state of CaCO3 aragonite to 29 GPa and 1673 K: in situ X-ray diffraction study,” Phys. Earth Planet. Inter. 265, 82–91 (2017).

    Article  Google Scholar 

  • Yu. A. Litvin, V. Yu. Litvin, and A. A. Kadik, “Experimental characterization of diamond crystallization in melts of mantle silicate–carbonate–carbon systems at 7.0–8.5 GPa, Geochem. Int. (6), 531–553 (2008).

    Article  Google Scholar 

  • A. Logvinova, R. Wirth, E. Fedorova, and N. Sobolev, “Nanometre-sized mineral and fluid inclusions in cloudy Siberian diamonds: new insights on diamond formation,” Eur. J. Mineral. 20, 317–331 (2008).

    Article  Google Scholar 

  • A. M. Logvinova, R. Wirth, A. A. Tomilenko, V. P. Afanas’ev, and N. V. Sobolev, “The phase composition of crystal-fluid nanoinclusions in alluvial diamonds in the northeastern Siberian platform,” Russ. Geol. Geophys. 52 (11), 1286–1297 (2011).

    Article  Google Scholar 

  • R. W. Luth, Experimental determination of the reaction aragonite plus magnesite–dolomite at 5 to 9 GPa,” Contrib. Mineral. Petrol. 141 (2), 222–232 (2001).

    Article  Google Scholar 

  • I. Martinez, J. Zhang, and R. J. Reeder, “In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite breakdown to aragonite and magnesite,” Am. Mineral. 81, 611–624 (1996).

    Article  Google Scholar 

  • O. Navon, “High internal-pressures in diamond fluid inclusions determined by infrared absorbtion,” Nature, 353, 746–748 (1991).

    Article  Google Scholar 

  • S. Ono, T. Kikegawa, Y. Ohishi, and J. Tsuchiya, “Postaragonite phase transformation in CaCO3 at 40 GPa,” Am. Mineral. 90, 667–671 (2005).

    Article  Google Scholar 

  • S. Ono, T. Kikegawa, and Y. Ohishi, “High-pressure transition of CaCO3,” Am. Mineral 92, 1246–1249 (2007).

    Article  Google Scholar 

  • M. Schrauder and O. Navon, “Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana,” Geochim. Cosmochim. Acta 52, 761–771 (1994).

    Article  Google Scholar 

  • V. S. Shatsky, D. A. Zedgenizov, A. L. Ragozin, and V. V. Kalinina, “Carbon isotopes and nitrogen contents in placer diamonds from the NE Siberian craton: implications for diamond origins,” Eur. J. Mineral. 26, 41–52 (2014).

    Article  Google Scholar 

  • N. V. Sobolev, F. V. Kaminsky, W. L. Griffin, E. S. Yefimova, T. T. Win, C. G. Ryan, and A. I. Botkunov, “Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia,” Lithos 39, 135–157 (1997).

    Article  Google Scholar 

  • N. V. Sobolev, A. M. Logvinova, D. A. Zedgenizov, Y. V. Seryotkin, E. S. Yefimova, C. Floss, and L. A. Taylor, “Mineral inclusions in microdiamonds and macrodiamonds from kimberlites of Yakutia: a comparative study,” Lithos 77, 225–242 (2004).

    Article  Google Scholar 

  • N. V. Sobolev, A. M. Logvinova, and E. S. Efimova, “Syngenetic phlogopite inclusions in kimberlite-hosted diamonds: implications for role of volatiles in diamond formation,” Russ. Geol. Geophys. 50 (12), 1234–1248 (2009).

    Article  Google Scholar 

  • T. Stachel and J. W. Harris, “Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania,” Contrib. Mineral. Petrol. 132 (1), 34–47 (1998).

    Article  Google Scholar 

  • T. Stachel, J. W. Harris, G. P. Brey, and W. Joswig, “Kankan diamonds (Guinea) II: lower mantle inclusion parageneses,” Contrib. Mineral. Petrol. 140 (1), 16–27 (2000).

    Article  Google Scholar 

  • T. Stachel, J. W. Harris, and K. Muehlenbachs, “Sources of carbon in inclusion bearing diamonds,” Lithos 112, 625–637 (2009).

    Article  Google Scholar 

  • K. Suito, J. Namba, T. Horikawa, Y. Taniguchi, N. Sakurai, M. Kobayashi, A. Onodera, O. Shimomura, and T. Kikegawa, “Phase relations of CaCO3 at high pressure and high temperature,” Am. Mineral. 86, 997–1002 (2001).

    Article  Google Scholar 

  • R. Tappert, J. Foden, T. Stachel, K. Muehlenbachs, M. Tappert, and K. Wills, “Deep mantle diamonds from South Australia: a record of Pacific subduction at the Gondwanan margin,” Geology 37(1), 43–46 (2009).

    Article  Google Scholar 

  • M. J. Walter, G. P. Bulanova, L. S. Armstrong, S. Keshav, J. D. Blundy, G. Gudfinnsson, O.T. Lord, A. R. Lennie, S. M. Clark, C. B. Smith, and L. Gobbo, “Primary carbonatite melt from deeply subducted oceanic crust,” Nature 454, 622–626 (2008).

    Article  Google Scholar 

  • M. J. Walter, S. C. Kohn, D. Araujo, G. P. Bulanova, C. B. Smith, E. Gaillou, J. Wang, A. Steele, and S. B. Shirey, “Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions,” Science 334, 54–57 (2011).

    Article  Google Scholar 

  • Y. Weiss, R. Kessel, W. L. Griffin, I. Kiflawi, O. Klein-Ben-David, D. R. Bell, J. W. Harris, and O. Navon, “A new model for the evolution of diamond-forming fluids: evidence from microinclusion-bearing diamonds from Kankan, Guinea,” Lithos 112S, 660–674 (2009).

    Article  Google Scholar 

  • R. Wirth, “Water in minerals detectable by electron energyloss srectroscopy EELS,” Phys. Chem. Mineral. 24, 561–568 (1997).

    Article  Google Scholar 

  • R. Wirth, “Focused Ion Beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy,” Eur. J. Mineral. 16, 863–876 (2004).

    Article  Google Scholar 

  • D. A. Zedgenizov, H. K. Kagi, V. S. Shatsky, and N. V. Sobolev, “Carbonatitic melts in cuboid diamonds from Udachnaya kimberlite pipe (Yakutia): evidence from vibrational spectroscopy,” Mineral. Mag. 68 (1), 61–73 (2004).

    Article  Google Scholar 

  • D. A. Zedgenizov, A. L. Ragozin, and V. S. Shatsky, “Chloride–carbonate fluid in diamonds from the eclogite xenolith,” Dokl. Earth Sci. 415, 961–964 (2007).

    Article  Google Scholar 

  • D. A. Zedgenizov, H. Kagi, V. S. Shatsky, and A. L. Ragozin, “Local variations of carbon isotope composition in diamonds from Sao-Luis (Brazil): evidence for heterogeneous carbon reservoir in sublithospheric mantle,” Chem. Geol. 363, 114–124 (2014).

    Article  Google Scholar 

  • D. A. Zedgenizov, A. L. Ragozin, V. V. Kalinina and H. Kagi, “The mineralogy of Ca-Rich inclusions in sublithospheric diamonds,” Geochem. Int. 54 (10), 890–901 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Logvinova.

Additional information

Original Russian Text © A.M. Logvinova, R. Wirth, D.A. Zedgenizov, L.A. Taylor, 2018, published in Geokhimiya, 2018, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logvinova, A.M., Wirth, R., Zedgenizov, D.A. et al. Carbonate–Silicate–Sulfide Polyphase Inclusion in Diamond from the Komsomolskaya Kimberlite Pipe, Yakutia. Geochem. Int. 56, 283–291 (2018). https://doi.org/10.1134/S0016702918040079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702918040079

Keywords

Navigation