Skip to main content
Log in

Evolution of the Kerguelen plume and its impact upon the continental and oceanic magmatism of East Antarctica

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Petrological–geochemical study showed that the alkaline-ultramafics of the Jetty Oasis (rift zone of the Lambert glacier, East Antarctica) are similar in the age (117–110 Ma) and geochemistry to the ultrapotassic alkali basalts of eastern India (Jharia and Raniganj intrusions). Alkaline magmatism in India and Antarctica is related to the activity of the Kerguelen plume, which significantly affected the evolution of the entire eastern Indian Ocean, in particular, determined geodynamic peculiarities of the ocean opening (existence of non-spreading blocks, fragments of the Gondwana lithosphere in oceanic areas) and geochemical characteristics of erupted tholeiitic magmas. Enriched magma sources related to the Kerguelen plume were formed by melting of ancient Gondwana-derived continental fragments, which experienced multiple transformations during its evolution up to the formation of metasomatized mantle under the impact of the Kerguelen plume on the Antarctic and India margins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • A. V. Andronnikov, Deep-seated minerals from alkaline ultrabasic rocks of East Antarctica, in Geological-Geophysical Studies in Antarctica (PGO Sevmorgeologiya, Leningrad, 1987), pp. 48–53 [in Russian].

    Google Scholar 

  • A. V. Andronikov, “Spinel–garnet lherzolite nodules from alkaline-ultrabasic rocks of Jetty Peninsula (East Antarctica),” Antarct. Sci. 2, 321–330 (1990).

    Article  Google Scholar 

  • A. V. Andronikov and B. V. Beliatsky, “Implication of Sm-Nd isotopic systematics to the events recorded in the mantle-derived xenoliths from the Jetty Peninsula, East Antarctica,” Terra Antarctica 2, 103–110 (1995).

    Google Scholar 

  • A. V. Andronikov, and L. S. Egorov, “Mesozoic alkalineultrabasic magmatism of Jetty Peninsula,” in Gondwana Eight: Assembly, Evolution and Dispersal, Ed. by R. H. Findley, R. Unrug, M. R. Banks, and J. J. Veevers, (Balkema, Rotterdam–Brookfield, 1993), pp. 547–558.

    Google Scholar 

  • A. V. Andronikov and S. F. Foley, “Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area,” Chem. Geol. 175, 291–305 (2001).

    Article  Google Scholar 

  • J. Barling, S. L. Goldstein, and I. A. Nicholls, “Geochemistry of Heard Island (Southern Indian Ocean): characterization of an enriched mantle component and implications for enrichment of the Sub-Indian Ocean Mantle,” J. Petrol. 35 (4), 1017–1053 (1994).

    Article  Google Scholar 

  • B. V. Belyatsky, and A. V. Andronnikov, Deep-seated lherzolite nodules from alkaline ultrabasic rocks of the Jetty oasis (East Antarctica): mineralogical–geochemical composition, P–T conditions, and Sr–Nd isotope characteristics, in Scientific Results of Russian Geological–Geophysical Investigations in Antarctica (VNIIOkeanologiya, St. Peterburg, 2008), Vol. 2, pp. 89–109 [in Russian].

    Google Scholar 

  • B. V. Belyatsky, and A. V. Andronnikov, “Age of upper mantle of the Beaver Lake area (East Antarctica): Sm-Nd isotope systematics of mantle xenoliths,” Probl. Arktik. Antarktik. 78 (4), 146–169 (2009).

    Google Scholar 

  • F. Bénard, J. P. Callot, R. Vially, J. Schmitz, W. Roest, M. Patriat, B. Loubrieu, and ExtraPlac Team, “The Kerguelen plateau: records from a long-living/composite microcontinent,” Mar. Petrol. Geol. 27, 633–649 (2010).

    Article  Google Scholar 

  • A. Yu. Borisiva, I. K. Nikogosian, J. S. Scoates, D. Weis, D. Damasceno, N. Shimizu, and J. L. R. Touret, “Melt, fluid and crystal inclusions in olivine phenocrysts from Kerguelen plume-derived picritic basalts: evidence for interaction with the Kerguelen Plateau lithosphere,” Chem. Geol. 183, 195–220 (2002).

    Article  Google Scholar 

  • A. Yu. Borisova, B. V. Belyatsky, M. V. Portnyagin, and N. M. Suschevskaya, “Petrogenesis of an olivinephyric basalts from the Aphanasey Nikitin Rise: evidence for contamination by cratonic lower continental crust,” J. Petrol. 42, 277–319 (2001).

    Article  Google Scholar 

  • A. A. Bulychev, D. A. Gilod, and E. P. Dubinin, “Structure of the lithosphere of the northeastern part of the Indian Ocean according to results of two-dimensional structural-density modeling,” Geotectonics 50 (3), 257–275 (2016).

    Article  Google Scholar 

  • A. A. Bulychev, D. A. Gilod, and E. P. Dubinin, “Twodimensional structural–density modeling of structure of tectonosphere of the southern Indian Ocean,” Geofiz. Issled. 16 (4), 15–35 (2015).

    Google Scholar 

  • N. V. Chalapathi Rao, R. K. Srivastava, A. K. Sinha, and V. Ravikant, “Petrogenesis of Kerguelen mantle plume-linked Early Cretaceous ultrapotassic intrusive rocks from the Gondwana sedimentary basins, Damodar Valley, Eastern India,” Earth-Sci. Rev. 136, 96–120 (2014).

    Article  Google Scholar 

  • N. Chatterjee and K. Nicolaysen, “An intercontinental correlation of the mid-Neoproterozoic Eastern Indian tectonic zone: evidence from the gneissic clasts in Elan Bank conglomerate, Kerguelen Plateau,” Contrib. Mineral. Petrol. 163, 789–806 (2012).

    Article  Google Scholar 

  • M. Coffin, M. S. Pringal, R. A. Dungan, T. P. Gladczenko, M. Storey, R. D. Muller, and L. A. Gahagan, “Kerguelen hot spot magma output since 130 Ma,” J. Petrol. 43 (7), 1121–1139 (2002).

    Article  Google Scholar 

  • G. F. Davies, “Dynamical geochemistry of the mantle,” Solid Earth 2, 159–189 (2011).

    Article  Google Scholar 

  • L. S. Egorov, “Some petrological, geochemical, and genetic features of hypabyssal alkaline ultrabasic rocks by the example of the polcenitic–alkaline picritic complex of the Jetty oasis (Prince Charles Mountains, East Antarctica),” Geokhimiya, No. 1, 24–39 (1994).

    Google Scholar 

  • S. F. Foley, “Rejuvenation and erosion of the cratonic lithosphere,” Nature Geosci. 1, 503–510 (2008).

    Article  Google Scholar 

  • S. F. Foley, A. V. Andronikov, and S. Melzer, “Petrology of ultramafic lamprophyres from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland,” Mineral. and Petrol. 74, 361–384 (2001).

    Article  Google Scholar 

  • S. F. Foley, A. V. Andronikov, D. E. Jacob, and S. Melzer, “Evidence from Antarctic mantle peridotite xenoliths for changes in mineralogy, geochemistry and geothermal gradients beneath a developing rift,” Geochim. Cosmochim. Acta 70, 3096–3120 (2006).

    Article  Google Scholar 

  • F. A. Frey, M. F. Coffin, and P. J. Wallace, “Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian ocean,” Earth Planet. Sci. Lett. 176, 73–89 (2000).

    Article  Google Scholar 

  • F. A. Frey, D. Weis, A. Y. Borisova, and G. Xu, “Involvement of continental crust in the formation of the Kerguelen Plateau: new perspectives from ODP Leg 120 Sites,” J. Petrol. 43 (7), 1207–1239 (2002a).

    Article  Google Scholar 

  • F. A. Frey, K. Nicolaysen, B. K. Kubit, D. Weis, and A. Giret, “Flood basalt from Mont Tourmente in the Central Kerguelen Archipelago: the change from transitional to alkali basalt at 25 Ma,” J. Petrol. 43 (7), 1367–1387 (2002b).

    Article  Google Scholar 

  • A. Ghatak and A. R. Basu, “Vestiges of the Kerguelen plume in the Sylhet Traps, northeastern India,” Earth Planet. Sci. Lett. 308, 52–64 (2011).

    Article  Google Scholar 

  • D. A. Golynsky, and A. V. Golynsky, “Gaussberg rift–illusion or reality? USGS OF-2007-1047. U.S. Geological Survey and the National Academies, 10th International Symposium on Antarctic Earth Sciences. Extended abstract, 168 (2011).

  • D. A. Golynsky, and A. V. Golynsky, “Rift systems of East Antarctica—a key to understanding the Gondwana breakup,” Regional. Geol. Metallogen. 52, 58–72 (2012).

    Google Scholar 

  • M. Grégoire, J.-Y. Cottin, A. Giret, N. Mattielli, and D. Weis, “The meta-igneous granulite xenoliths from Kerguelen Archipelago: evidence of a continent nucleation in an oceanic setting,” Contrib. Mineral. Petrol. 133(3), 259–283 (1998).

    Article  Google Scholar 

  • G. E. Grikurov, E. M. Orlenko, and L. V. Fedorov, “Alkaline-ultrabasic rocks of the Beaver lake area (East Antarctica),” Tr. Sov. Antarktik. Eksped., 80, 87–99 (1980).

    Google Scholar 

  • M. Harrowfield, G. R. Holdgate, C. J. L.Wilson, and S. McLoughlin, “Tectonic significance of the Lambert Graben, East Antarctica: reconstructing the Gondwanan Rift,” Geology 33 (3), 197–200 (2005).

    Article  Google Scholar 

  • S. R. Hart, “A large-scale isotope anomaly in the southern hemisphere mantle,” Nature 309 (5971), 753–757 (1984).

    Article  Google Scholar 

  • A. W. Hofmann, “Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements,” Treatise on Geochemistry 2, 61–101 (2003).

    Google Scholar 

  • W. Jokat, T. M. Boebel, M. Konig, and U. Meyer, “Timing and geometry of early Gondwana breakup,” J. Geoph. Res. 108 (B9) (2003), doi 10.1029/2002JB001802

  • R. Krymsky, Sh. D. S. Sergeev, G. E. Brugmann, S. S. Shevchenko, A. V. Antonov, B. V. Belyatsky, and S. A. Sergeev, “Experience in study of osmium isotope analysis and PGE distribution in peridotites of lithospheric mantle of East Antarctica,” Regional. Geol. Metallogen. 46, 51–60 (2011).

    Google Scholar 

  • I. V. Kudryavtseva, A. A. Laiba, and B. V. Belyatsky, “A new dike of phlogopite alkaline picrites at the Meredith Massif (Prince Charles Mountains, East Antarctica), in Scientific Results of Geological–Geophysical Studies in Antarctica (VNIIOkeanologiya, St. Petersburg, 2006), Vol. 1, pp. 54–65.

    Google Scholar 

  • R. G. Kurinin, A. S. Grinson, and Dun Tzun In, “Rift zone of the Lambert Glacier as a possible alkaline ultrabasic province in East Antarctica,” Dokl. Akad. Nauk SSSR 299, 944–947 (1988).

    Google Scholar 

  • A. A. Laiba, A. V. Andronnikov, L. S. Egorov, and L. V. Fedorov, “Alkaline-Basic stock-like and dike bodies in the Jetty Oasis (Prince Charles Mountains, East Antarctica),” in Geological-Geophysical Investigations in Antarctica (PGO Sevmorgeologiya, Leningrad, 1987), pp. 35–46 [in Russian].

    Google Scholar 

  • L. Ma, S. Y. Jiang, M. L. Hou, B. Z. Dai, Y. H. Jiang, T. Yang, K. D. Zhao, W. Pu, Z. Y. Zhu, and B. Xu, “Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong for the origin of an enriched isotopic component in the Italian mantle,” Gondwana Res. 25, 859–872 (2013).

    Article  Google Scholar 

  • J. J. Mahoney, W. B. Jones, F. A. Frey, V. J. M. Salters, D. G. Pyle, and H. L. Davies, “Geochemical characteristics of lavas from Broken Ridge, the Naturaliste Plateau, and southernmost Kerguelen Plateau: Cretaceous plateau volcanism in the southeast Indian Ocean,” Chem. Geol. 120, 315–345 (1995).

    Article  Google Scholar 

  • A. Meibom and D. L. Anderson, “The statistical upper mantle assemblage,” Earth Planet. Sci. Lett. 217, 123–139 (2003).

    Article  Google Scholar 

  • E. A. K. Middlemost, D. K. Paul, and I. R. Fletcher, “Geochemistry and mineralogy of the minette–lamproite association from the Indian Gondwana,” Lithos 22, 31–42 (1988).

    Article  Google Scholar 

  • E. V. Mikhalsky, Proterozoic Geological Complexes of East Antarctica: Composition and Origin (VNIIOkeanologiya, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  • E. V. Mikhalsky, and A. A. Laiba, “Subalkaline basic rocks in the Jetty Oasis (East Antarctica),” Antarctica. Reports of Commission (Nauka, Moscow, 1990), Vol. 29, pp. 56–66 [in Russian].

    Google Scholar 

  • E. V. Mikhalsky, A. A. Laiba, and N. P. Surina, “The Lambert Province of alkaline-basic and alkaline-ultrabasic rocks in East Antarctica: geochemical and genetic characteristics of igneous complexes,” Petrology 6 (5), 466–479 (1998).

    Google Scholar 

  • A. Montanini and R. Tribuzio, “Evolution of recycled crust within the mantle: constraints from the garnet pyroxenites of the external Ligurian ophiolites (northern Apennines, Italy),” Geology 43 (10), 911–914 (2015).

    Article  Google Scholar 

  • S. G. Nobre Silva, D. Weis, J. S. Scoates, and J. Barling, “The Ninetyeast Ridge and its Relation to the Kerguelen, Amsterdam and St. Paul Hotspots in the Indian Ocean,” J. Petrol. 54 (6), 1177–1210 (2013).

    Article  Google Scholar 

  • H. K. H. Olierook, F. Jourdan, R. E. Merle, N. E. Timms, N. Kusznir, and J. R. Muhling, “Bunbury Basalt: Gondwana breakup products or earliest vestiges of the Kerguelen mantle plume?” Earth Planet. Sci. Lett. 440, 20–32 (2016).

  • J. P. Owen, “Geochemistry of lamprophyres from the Western Alps, Italy: implications for the origin of an enriched isotopic component in the Italian mantle,” J. Petrol. 155, 341–362 (2008).

    Google Scholar 

  • A. D. Saunders, M. Storey, I. L. Gibson, et al., “Chemical and isotopic constrains on the origin of basalts from Ninetyeast Ridge, Indian Ocean: result from DSDP Legs 22 and 26 and ODP Leg 121,” Proceedings of ODP Science Results, College Station, TX (Ocean Drilling Program), Ed. by J. Weissel, J. Peirce, E. Taylor, et al.,121, 559–590 (1991).

    Google Scholar 

  • J. S. Scoates, M. L. Cascio, D. Weis, and D. H. Lindsley, “Experimental constraints on the origin and evolution of mildly alkali basalts from the Kerguelen Archipelago, Southeast Indian Ocean,” Contrib. Mineral. Petrol. 151 (5), 582–599 (2006).

    Article  Google Scholar 

  • A. V. Sobolev, S. V. Sobolev, D. V. Kuzmin, K. N. Malitch, and A. G. Petrunin, “Siberian meimechites: origin and relation to flood basalts and kimberlites,” Russ. Geol. Geophys. 50(12), 999–1033 (2009).

    Article  Google Scholar 

  • M. Storey, A. D. Saunders, J. Tarney, and I. L. Gibson, “Contamination of Indian Ocean asthenosphere by the Kerguelen-Heard mantle plume,” Nature 338, 574–576 (1989).

    Article  Google Scholar 

  • S.-S. Sun and W.F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Sp. Publ.42, 313–345 (1989).

    Google Scholar 

  • N. M. Sushchevskaya B. V. Belyatsky, G. L. Levchenkov, and A. A. Laiba, “Evolution of the Karoo–Maud mantle plume in Antarctica and its influence on the magmatism of the early stages of Indian Ocean opening,” Geochem. Int. 47 (1), 1–17 (2009).

    Article  Google Scholar 

  • N. Sushchevskaya and B. Belyatsky, “Geochemical and petrological characteristics of Mesozoic dykes from Schirmacher Oasis (East Antarctica),” in Dyke Swarms: Keys for Geodynamic Interpretation, Ed. by R. K. Srivastava (Springer-Verlag, Berlin–Heidelberg, 2011a), pp. 3–18, doi 10.1007/978-3-642-12496-9_1

    Google Scholar 

  • N. M. Sushchevskaya, B. V. Belyatsky, T. I. Tsekhonya, E. G. Mirlin, V. V. Nikulin, T. V. Romashova, and E. M. Sedykh, “Petrology and geochemistry of basalts from the eastern Indian Ocean: implications for its early evolution,” Petrology, 6, 480–505 (1998).

    Google Scholar 

  • N. M. Sushchevskaya, B. V. Belyatsky, and A. V. Laiba, “Origin, distribution and evolution of plume magmatism in East Antarctica,” in Volcanology, Ed. by Fr. Stoppa (INTECH Rijeka, 2011), pp. 3–29

    Google Scholar 

  • N. M. Sushchevskaya, N. A. Migdisova, A. V. Antonov, R. Sh. Krymsky, B. V. Belyatsky, D. V. Kuzmin, and Ya. V. Bychkova, “Geochemical features of the Quaternary lamproitic lavas of Gaussberg Volcano, East Antarctica: result of the impact of the Kerguelen Plume,” Geochem. Int. 52 (12), 1030–1048 (2014).

    Article  Google Scholar 

  • N. M. Sushchevskaya, O. V. Levchenko, E. P. Dubinin and B. V. Belyatsky, “Ninetyeast Ridge: magmatism and geodynamics,” Geochem. Int. 54 (3), 237–256 (2016).

    Article  Google Scholar 

  • P. E. van Keken, E. H. Hauri, and C. J. Ballentine, “Mantle mixing: the generation, preservation, and destruction of geochemical heterogeneity,” Annu. Rev. Earth Planet. Sci. 30, 493–525 (2002).

    Article  Google Scholar 

  • D. Weis and F. A. Frey, “Isotope geochemistry of Ninetyeast Ridge basement basalts: Sr, Nd and Pb evidence for involvement of the Kerguelen hot spot,” Proceedings of ODP Science Results, College Station, TX (Ocean Drilling Program), Ed. by J. Wise, J. Peirce, et al.,121, 591–610 (1991).

    Google Scholar 

  • D. Weis and F. A. Frey, “Submarine basalts of the Northern Kerguelen Plateau: interaction between the Kerguelen plume and the Southeast Indian Ridge revealed at ODP Site 1140,” J. Petrol. 43 (7), 1287–1309 (2002).

    Article  Google Scholar 

  • D. F. Weis, A. Frey, A. Giret, and J.-M. Cantagrel, “Geochemical characteristics of the youngest volcano (Mount Ross) in the Kerguelen Archipelago: inferences for magma flux, lithosphere assimilation and composition of the Kerguelen Plume,” J. Petrol. 39 (5), 973–994 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Sushchevskaya.

Additional information

Original Russian Text © N.M. Sushchevskaya, B.V. Belyatsky, E.P. Dubinin, O.V. Levchenko, 2017, published in Geokhimiya, 2017, No. 9, pp. 782–799.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushchevskaya, N.M., Belyatsky, B.V., Dubinin, E.P. et al. Evolution of the Kerguelen plume and its impact upon the continental and oceanic magmatism of East Antarctica. Geochem. Int. 55, 775–791 (2017). https://doi.org/10.1134/S0016702917090099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917090099

Keywords

Navigation