Skip to main content
Log in

Integrated approach to determine background concentrations of chemical elements in soils

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Analysis and calculation techniques of geochemical background concentrations of chemical elements in various systems is of paramount importance for applied geochemistry. Herein we assume the geochemical background as the average of natural variations in the concentrations of chemical elements determined at a territory that highly probable does not host any natural and/or anthropogenic sources of contaminating chemical elements. In the context of determining geochemical background, our research was focused on determining the concentrations of heavy metals in soils in the city of Yerevan with the application of an integrated approach. Comparison of the obtained background values with the mean concentrations of elements in the upper continental crust yields representative data, and the application of various statistical tests (±3σ, ±2σ, and boxplots) is proved to equally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • V. A. Alekseenko, A. V. Suvorinov, V. Ap. Alekseenko, and A. B. Bofanova, Metals in the Environment. Soils of Geochemical Landscapes of the Rostov Region (Logos, Moscow, 2002) [in Russian].

    Google Scholar 

  • D. Baize and T. Sterckeman, “Of the necessity of knowledge of the natural pedo-geochemical background content in the evaluation of the contamination of soils by trace elements,” Science Total Environ. 264 (1–2), 127–139 (2001).

    Article  Google Scholar 

  • R. L. Bates and J. A. Jackson, Dictionary of Geological Terms (Anchor, New York, 1984).

    Google Scholar 

  • A. A. Beus, L. I. Grabovskaya, and Kh. V. Tikhinova, Environmental Geochemistry (Nedra, Moscow, 1976) [in Russian].

    Google Scholar 

  • A. A. Beus, S. V. Grogoryan, M. T. Oizerman, P. G. Cholakyan, and A. A. Stoyanovskii, Guidebook on the Preparatory Mathematic Processing of Geochemical Information in Exploration Operations (Nedra, Moscowo, 1965) [in Russian].

    Google Scholar 

  • D. Cicchella, B. De Vivo, and A. Lima, “Background and baseline concentration values of elements harmful to human health in the volcanic soils of the metropolitan and provincial areas of Napoli (Italy),” Geochem: Explor., Environ., Anal. 5, 29–40 (2005).

    Google Scholar 

  • G. S. Fomin, and A. G. Fomin, Soil. Control of Quality and Ecological Safety on International Standard (Protektor, Moscow, 2001) [in Russian].

    Google Scholar 

  • A. Galuszka, “A review of geochemical background concepts and an example using data from Poland,” Environ. Geol. 52, 861–870 (2007).

    Article  Google Scholar 

  • N. A. Grigor’ev, “Average content of elements in the upper continental crust,” Litosfera 1 (2), 61–71 (2002).

    Google Scholar 

  • ISO 10381-5:2005. Soil Quality–Sampling–Part 5: Guidance on the Procedure for the Investigation of Urban and Industrial Sites with Regard to Soil Contamination. C. C. Johnson, A. Demetriades, J. Locutura, and R. T. Ottesen, Mapping the Chemical Environment of Urban Areas (Wiley & Sons, 2011).

  • A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants (Boca Raton–CRC Press, London–New York, 2001).

    Google Scholar 

  • N. S. Kasimov, A. S. Kkurbatov, and V. N. Bashkin, Urban Ecology (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  • J. Matschullat, R. Ottenstein, and C. Reimann, “Geochemical background—can we calculate it?” Environ. Geol. 39 (9), 990–1000 (2000).

    Article  Google Scholar 

  • Methodical Recommendations on the Geochemical Assessment of City Pollution by Chemical Elements (IMGRE, Moscow, 1982) [in Russian].

  • H. Meuser, Contaminated Urban Soils (Springer, 2010).

    Book  Google Scholar 

  • A. I. Perelman and N. S. Kasimov, Landscape Geochemistry (Asteriya-2000, Moscow, 1999) [in Russian].

    Google Scholar 

  • C. Perez-Sirvent, M. J.Martinez-Sanchez, M. L. Garcia-Lorenzo, J. Molina, and M. L. Tudela, “Geochemical background levels of zinc, cadmium and mercury in anthropically influenced soils located in a semi-arid zone (SE, Spain),” Geoderma 148 (3–4), 307–317 (2009).

    Article  Google Scholar 

  • K. M. Portier, “Statistical issues in assessing anthropogenic background for arsenic,” Environ. Forens. 2 (2), 155–160 (2001).

    Article  Google Scholar 

  • C. Reimann and P. Filzmoser, “Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data,” Environ. Geol. 39 (9), 1001–1014 (2000).

    Article  Google Scholar 

  • C. Reimann, P. Filzmoser, and R. G. Garrett, “Background and threshold: critical comparison of methods of determination,” Sci. Tot. Environ. 346 (1–5), 1–16 (2005).

    Article  Google Scholar 

  • C. Reimann, P. Filzmoser, R. G. Garrett, and R. Dutter, “Statistical data analysis explained,” (John Wiley & Sons, 2008).

    Book  Google Scholar 

  • A. N. Rencz, R. G. Garrett, S. W. Adcock, W. A. Spirito, and G. F. Bonham-Carter, “Geochemical background in soil and till” Geol. Surv. Can., Open File, No. 5084 (2006).

  • L. V. Saakyan, Extended Abstract of Candidate’s Dissertation in Geography (Yerevan Gos. Univ., Yerevan, 2008).

    Google Scholar 

  • Yu. E. Saet, B. A. Revich, and E. P Yanin, Environmental Geochemistry (Nedra, Moscow, 1990) [in Russian].

    Google Scholar 

  • A. K. Sagatelyan, Distribution of Heavy Metals over Armenia (Ts. Ekol.-Noosf. Issled. NAN RA, Yerevan, 2004) [in Russian].

    Google Scholar 

  • P. Tume, R. King, E. Gonzalez, G. Bustamante, F. Reverter, N. Roca, and J. Bech, “Trace element concentrations in schoolyard soils from the port city of Talcahuano, Chile,” J. Geochem. Explor. 147 (Part B), 229–236 (2014).

    Article  Google Scholar 

  • US EPA Field sampling guidance document #1205. Soil sampling. http://www.epa.gov/region6/qa/qadevtools/mod5_sops/soil_sampling/r9soilsample_gui.pdf

  • US EPA Method 6200. Field portable x-ray fluorescence spectrometry for thedetermination of elemental concentrations in soil and sediment, 2007 http://www.epa.gov/osw/hazard/testmethods/sw846/pdfs/6200.pdf

  • W. Zglobicki, L. Lata, A. Plak, and M. Reszka, “Geochemical and statistical approaches to evaluate background concentrations of Cd, Cu, Pb and Zn (case study: Eastern Poland),” Environ. Earth Sci. 62 (2), 347–355 (2011).

    Article  Google Scholar 

  • F. J. Zhao, S. P. McGrath, and G. Merrington, “Estimates of ambient background concentrations of trace metals in soils for risk assessment,” Environ. Pollut. 148 (1–3), 221–229 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. O. Tepanosyan.

Additional information

Original Russian Text © G.O. Tepanosyan, O.A. Belyaeva, L.V. Saakyan, A.K. Sagatelyan, 2017, published in Geokhimiya, 2017, No. 6, pp. 563–570.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tepanosyan, G.O., Belyaeva, O.A., Saakyan, L.V. et al. Integrated approach to determine background concentrations of chemical elements in soils. Geochem. Int. 55, 581–588 (2017). https://doi.org/10.1134/S0016702917060106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917060106

Keywords

Navigation