Skip to main content
Log in

Accumulation of polycyclic aromatic hydrocarbons in hummocky tundra peatlands under climate change at high latitudes

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The quantitative and qualitative compositions of polycyclic aromatic hydrocarbons (PAHs) were determined, and the vertical stratification of PAHs was characterized along profiles in hummocky tundra peatlands. In perennially frozen peat layers, PAHs occur in a conserved state and do not undergo transformation in contrast to seasonally thawed layers. Statistically significant correlations were detected between the mass fraction of 5–6-ring structures (especially, benzo[ghi]perylene), individual PAHs, and botanical composition of the peat at the thawing–freezing boundary; and profile relations for various combinations of PAHs were calculated. The radiocarbon and paleobotanical analysis of peatlands in combination with the obtained results can be used for assignment of initial vegetation to periods of peat formation in the Holocene and as markers of the response of the peatland permafrost to climate changes at high latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. Bozkurt, M. Lucisano, L. Moreno, and I. Neretnieks, “Peat as a potential analogue for the long-term evolution in landfills,” Earth-Sci. Rev. 53 (1–2), 95–147 (2001).

    Article  Google Scholar 

  • O. A. Chichagova, Radiocarbon Dating of Soil Humus. Method and Application in Pedology and Paleogeography (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  • Climatic and Hydrological Atlas of the Komi Republic. Environmental Department of the Ministry of Natural Resources and Environment Protection of the Komi Republic, Inst. Biol. Komi Nauch. Ts. Ural’sk. Otd. Ross. Akad. Nauk (Drofa, Moscow, 1997) [in Russian].

  • S. Dahle, V. Savinov, V. Petrova, J. Klungsøyr, T. Savinova, G. Batova, and A. Kursheva, “Polycyclic aromatic hydrocarbons (PAHs) in Norwegian and Russian Arctic marine sediments: Concentrations, geographical distribution and sources,” Norsk. Geologisk. Tidsskrift. 86 (1), 41–50 (2006).

    Google Scholar 

  • D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils,” Eur. Soil Sci. 40 (3), 256–264 (2007).

    Article  Google Scholar 

  • D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and E. V. Yakovleva, “Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils,” Eur. Soil Sci. 41 (11), 1180–1188 (2008).

    Article  Google Scholar 

  • A. N. Gennadiev, Yu. I. Pikovsky, V. N. Florovskaya, T. A. Alekseeva, I. S. Kozin, A. I. Ogloblina, M. E. Ramneskaya, T. A. Teplitskaya, and E. I. Shurubor, Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils (Mosk. Gos. Univ., Moscow, 1996) [in Russian].

    Google Scholar 

  • IPCC, 2007: Climate Changes, 2007: Synthesis Report. Contribution of Working Groups I, II, and III to the 4 th Assessment Report of Intergovernmental Panel on Climate Changes, Ed. by Core Writing Team, R. K. Pachauri, A. Raizinger, et al., (IPCC, Geneva, 2007).

  • IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by Core Writing Team, R.K. Pachauri and L.A. Meyer (IPCC, Geneva, Switzerland).

  • V. A. Kashirtsev, V. V. Gaiduk, O. N. Chalaya, and I. N. Zueva, “Geochemistry of biomarkers and catagenesis of organic matter of Cretaceous and Cenozoic deposits in the Indigirka–Zyryanka Basin (northeastern Yakutia),” Russ. Geol. Geophys. 53 (8), 787–797 (2012).

    Article  Google Scholar 

  • L. N. Maksimov and E. N. Ospennikov, “Evolution of swampy systems and permafrost conditions of the Bol’shezemel’skaya tundra in the Holocene,” Kriosf. Zemli 16 (3), 53–61 (2012).

    Google Scholar 

  • Map of Quaternary Deposits. North Uralian Seies. Sheet Q-41-V. Scale 1: 200000, Ed. by V.S. Enokyam (Min. Geol. Okhr, Nedr, Moscow, 1959) [in Russian].

  • G. G. Mazhitova, “Soil temperature regimes in the discontinuous permafrost zone in the East European Russian Arctic,” Eur. Soil Sci. 41 (1), 48–62 (2008).

    Article  Google Scholar 

  • J. E. Ortiz, T. Torres, A. Delgado, R. Julià, M. Lucini, F. J. Llamas, E. Reyes, V. Soler, and M. Valle, “The palaeoenvironmental and palaeohydrological evolution of Padul Peat Bog (Granada, Spain) over one million years, from elemental, isotopic and molecular organic geochemical proxies,” Org. Geochem. 35, 1243–1260 (2004).

    Article  Google Scholar 

  • N. I. P’yavchenko, Hummocky Peat Bogs (AN SSSR, Moscow, 1955) [in Russian].

    Google Scholar 

  • R. D. Pancost, M. Baas, B. van Geel, and J. S. Sinninghe Damsté, “Biomarkers as proxies for plant inputs to peats: an example from a sub-boreal ombrotrophic bog,” Org. Geochem. 33, 675–690 (2002).

    Article  Google Scholar 

  • PND F 16.1:2.2:2.3:3.62-09 (2009), Quantitative Chemical Analysis of Soils. Technqiue of Measurements of Mass Fractions of Polycyclic Aromatic Hydrocarbons in Soils, Bottom Sediments, Sewage Sediments, and Wastes of Production and Consumption by High-Performance Liquid Chromatography (Federal. Sluzhba Ekol. Atom. Nadzor, Moscow, 2009) [in Russian].

  • J. Routh, G. Hugelius, P. Kuhry, T. Filley, P. K. Tillman, M. Becher, and P. Crill, “Multi-proxy study of soil organic matter dynamics in permafrost peat deposits reveal vulnerability to climate change in the European Russian Arctic,” Chem. Geol. 368, 104–117 (2014).

    Article  Google Scholar 

  • F. Ya. Rovinskii, T. A. Teplitskaya, and T. A. Alekseeva, Background Monitoring of Polycyclic Aromatic Hydrocarbons (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  • G. V. Rusanova, “Dynamic aspects in the Bol’shezemel’skaya tundra,” Izv. Komi Nauchn. Ts. Ural’sk. Otd. Ross. Akad. Nauk 2 (6), 38–44 (2011).

    Google Scholar 

  • S. N. Shanina, E. A. Golubev, and N. S. Burdelnaya, “Hydrocarbon biomarkers in shungites from Karelia,” Geochem. Int. 51 (9), 758–763 (2013)

    Article  Google Scholar 

  • Soil Atlas of the Komi Republic, Ed. by G. V. Dobrovol’skii, A. I. Taskaeva, and I. V. Zaboeva, (Komi Respiblikan. Tipograf., Syktyvkar, 2010) [in Russian].

  • Soil Memory: Soil as Memory of Biospheric–Geospheric–Antropospheric Interactions, Ed. by V.O. Targul’yan and S.V. Goryachkin (LKI, Moscow, 2008) [in Russian]

  • C. Tarnocai, J. Canadell, E. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23, 1–11 (2009).

    Article  Google Scholar 

  • N. I. Tonkopii, G. E. Shestopalova, and V. Ya. Rozanova, “Some facts determining the degradation of benz(a)pyrene in soil,” in Environmental Carcinogenic Substances (Nauka, Moscow, 1979), pp. 65–68 [in Russian].

    Google Scholar 

  • Yu. K. Vasil’chuk, A. C. Vasil’chuk, and J.-Ch. Kim, “The AMS radiocarbon dating of pollen concentrate from the Late Pleistocene ice wedge of the Bison Section, Kolyma Region,” Dokl. Earth Sci. 393 (1), 1141–1145 (2003).

    Google Scholar 

  • R. S. Vasilevich, D. N. Gabov, V. A. Beznosikov, I. V. Gruzdev, and E. D. Lodygin, “High- and lowmolecular organic compounds in tundra peatbogs,” Teoret. Prikl. Ekol., No. 1, 53–61 (2015).

    Google Scholar 

  • E. V. Yakovleva, D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Polycyclic aromatic hydrocarbons in soils and lower-layer plants of the Southern Shrub Tundra under technogenic conditions,” Eur. Soil Sci. 47 (6), 562–572 (2014).

    Article  Google Scholar 

  • S. Yamamoto, K. Kawamura, O. Seki, P. A. Meyers, Y. Zheng, and W. Zhou, “Environmental influences over the last 16 ka on compound-specific δ13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China,” Chem. Geol. 277, 261–268 (2010).

    Article  Google Scholar 

  • M. B. Yunker, R. W. Macdonald, L. R. Snowdon, and B. R. Fowler, “Alkane and PAH biomarkers as tracers of terrigenous organic carbon in Arctic Ocean sediments,” Org. Geochem. 42, 1109–1146 (2011).

    Google Scholar 

  • M. Zech, A. Andreev, R. Zech, S. Müller, U. Hambach, M. Frechen, and W. Zech, “Quaternary vegetation changes derived from a loess-like permafrost palaeosol sequence in northeast Siberia using alkane biomarker and pollen analyses,” Boreas 39, 540–550 (2010).

    Google Scholar 

  • S. A. Zimov, E. A. G. Schuur, and F. S. Chapin, “Permafrost and the global carbon budget,” Science 312, 1612–1613 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Gabov.

Additional information

Original Russian Text © D.N. Gabov, V.A. Beznosikov, E.V. Yakovleva, 2017, published in Geokhimiya, 2017, No. 8, pp. 741–756.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabov, D.N., Beznosikov, V.A. & Yakovleva, E.V. Accumulation of polycyclic aromatic hydrocarbons in hummocky tundra peatlands under climate change at high latitudes. Geochem. Int. 55, 737–751 (2017). https://doi.org/10.1134/S0016702917060039

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917060039

Keywords

Navigation