Skip to main content
Log in

Thermochemical study of Mg–Fe chlorites

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The thermochemical study of two natural trioctahedral Mg–Fe chlorites—clinochlores was carried out using high-temperature melt solution calorimetry with a Tian–Calvet microcalorimeter. The enthalpies of formation of clinochlores of compositions (Mg4.9Fe 2+0.3 Al0.8)[Si3.2Al0.8O10](OH)8 (–8811 ± 12 kJ/mol) and (Mg4.3Fe 2+0.7 Al1.0)[Si3.0Al1.0O10](OH)8 (–8696 ± 13 kJ/mol) from elements were determined. The values of the standard entropies and the Gibbs energies of formation of the studied natural minerals as well as thermodynamic properties of Mg–Fe chlorites of theoretical composition were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • S. U. Aja, “The stability of Fe–Mg chlorites in hydrothermal solutions: II. Thermodynamic properties,” Clays Clay Miner. 50, 591–600 (2002).

    Article  Google Scholar 

  • R. G. Berman, “Internally-consistent thermodynamic data for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O–CO2,” J. Petrol. 29 (2), 445–522 (1988).

    Article  Google Scholar 

  • J. V. Chernosky, Jr., “The upper stability of clinochlore at low pressure and the free energy of formation of Mgcordierite,” Am. Mineral. 59, 496–507 (1974).

    Google Scholar 

  • P. I. Dorogokupets, and I. K. Karpov, Thermodynamics of Minerals and Mineral Equilibria (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  • H. Gailhanou, J. Rogez, J. C. van Miltenburg, A. C. C. van Genderen, J. M. Greneche, E. C. Gaucher, C. Crouzet, S. Touzelet, and P. Blanc, “Experimental determination of thermodynamic properties of a chlorite,” in Intern. Meeting “Clays in Natural & Engineered Barriers for Radioactive Waste Confinement”, Lille, France, 2007 (Lille, 2007), pp. 355–356.

    Google Scholar 

  • H. Gailhanou, J. Rogez, J. C. van Miltenburg, A. C. C. van Genderen, J. M. Greneche, C. Gills, D. Jalabert, N. Michau, E. Gaucher, and P. Blanc, “Thermodynamic properties of chlorite CCa-2. Heat capacities, heat contents and entropies,” Geochim. Cosmochim. Acta 73, 4738–4749 (2009).

    Article  Google Scholar 

  • S. Guggenheim, J. M. Adams, D. C. Bain, F. Bergaya, M. F. Brigatti, V. A. Drits, M. L. L. Formoso, E. Galan, T. Kogure, and H. Stanjek, “Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the association internationale pour l’etude des argiles (AIPEA) nomenclature committee for 2006,” Clays Clay Miner. 54 (6), 761–772 (2006).

    Article  Google Scholar 

  • B. S. Hemingway, R. A. Robie, J. A. Kittrick, E. S. Grew, J. A. Nelen, and D. London, “The heat capacities of osumilite from 298.15 to 1000 K, the thermodynamic properties of two natural chlorites to 500 K, and the thermodynamic properties of petalote to 1800 K,” Am. Mineral. 69, 701–710 (1984).

    Google Scholar 

  • T. J. B. Holland, “Dependence of entropy on volume for silicate and oxide minerals: a review and a predictive model,” Am. Mineral. 74, 5–13 (1989).

    Google Scholar 

  • T. J. B. Holland and R. Powell, “An internally consistent thermodynamic data set for phases of petrological interest,” J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  • T. J. B. Holland and R. Powell, “An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids,” J. Metamorph. Geol. 29, 333–383 (2011).

    Article  Google Scholar 

  • D. M. Jenkins and J. V. Chernosky, “Phase equilibria and crystallochemical properties of Mg-chlorites,” Am. Mineral. 71, 924–936 (1986).

    Google Scholar 

  • J. Kestin, J. V. Sengers, B. Kamgar-Parsi, and J. M. H. Levelt Sengers, “Thermophysical properties of fluid H2O,” J. Phys. Chem. Ref. Data 13 (1), 175–183 (1984).

    Article  Google Scholar 

  • I. A. Kiseleva, “Thermodynamic properties and pyrope stability,” Geokhimiya, No. 6, 845–854 (1976).

    Google Scholar 

  • I. A. Kiseleva and L. P. Ogorodova, “Application of hightemperature calorimetry for determination of enthalpies of formation of hydroxyl-bearing minerals: evidence from talc and tremolite,” Geokhimiya, No. 12, 1745–1755 (1983).

    Google Scholar 

  • I. A. Kiseleva, L. P. Ogorodova, N. D. Topor, and O. G. Chigareva, “Thermochemical study of the CaO–MgO–SiO2 system,” Geokhimiya, No. 12, 1811–1825 (1979).

    Google Scholar 

  • J. A. Kittrick, “Solubility of two high-Mg and two high-Fe chlorites using multiple equilibria,” Clays Clay Miner. 30, 167–179 (1982).

    Article  Google Scholar 

  • A. Navrotsky and W. J. Coons, “Thermochemistry of some pyroxenes and related compounds,” Geochim. Cosmochim. Acta 40, 1281–1295 (1976).

    Article  Google Scholar 

  • J. O. Nriagu, “Thermochemical approximations for clay minerals,” Am. Mineral. 60, 834–839 (1975).

    Google Scholar 

  • L. P Ogorodova, L. V. Melchakova, I. A. Kiseleva, and I. A. Belitsky, “Thermochemical study of natural pollucite,” Thermochim. Acta 403, 251–256 (2003).

    Article  Google Scholar 

  • L. P. Ogorodova, M. F. Vigasina, L. V. Melchakova, I. A. Kiseleva, V. V. Krupskaya, I. A. Bryzgalov, “Natural Mg-Fe clinochlores: Enthalpies of formation and dehydroxylation derived from calorimetric study,” Am. Mineral. 101 (6), 1431–1437 (2016).

    Article  Google Scholar 

  • R. A. Robie and B. S. Hemingway, “Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures,” U.S. Geol. Surv. Bull. 2131, (1995).

    Google Scholar 

  • Yu. V. Shvarov, “A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements,” Appl. Geochem. 55, 17–27 (2015).

    Article  Google Scholar 

  • V. Šontevska, G. Jovanovski, and P. Makreski, “Minerals from Macedonia. Part XIX. Vibrational spectroscopy as identificational tool for some sheet silicate minerals,” J. Molecular Structure 834-836, 318–327 (2007).

    Article  Google Scholar 

  • Y. Tardy and R. M. Garrels, “A method of estimating the Gibbs energies of formation of layer silicates,” Geochim. Cosmochim. Acta 38, 1101–1116 (1974).

    Article  Google Scholar 

  • H. W. Van der Marel and H. Beutelspacher, Atlas of Infrared Spectroscopy of Clay Minerals and their Admixtures (Elsevier, Amsterdam–Oxford–New York, 1976).

    Google Scholar 

  • P. Vieillard, “A new method for the prediction of Gibbs free energies of formation of phillosilicates (10 and 14 Å) based on the electronegativity scale,” Clays Clay Miner. 50, 352–363 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Ogorodova.

Additional information

Original Russian Text © L.P. Ogorodova, L.V. Mel’chakova, M.F. Vigasina, I.A. Kiseleva, I.A. Bryzgalov, 2017, published in Geokhimiya, 2017, No. 3, pp. 230–235.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogorodova, L.P., Mel’chakova, L.V., Vigasina, M.F. et al. Thermochemical study of Mg–Fe chlorites. Geochem. Int. 55, 257–262 (2017). https://doi.org/10.1134/S0016702917030041

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702917030041

Keywords

Navigation