Skip to main content
Log in

Interaction of Fe and Fe3C with hydrogen and nitrogen at 6–20 GPa: a study by in situ X-ray diffraction

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

A method of in situ X-ray diffraction at Spring-8 (Japan) was used to analyze simultaneously the hydrogen incorporation into Fe and Fe3C, as well as to measure the relative stability of carbides, nitrides, sulfides, and hydrides of iron at pressures of 6–20 GPa and temperatures up to 1600 K. The following stability sequence of individual iron compounds was established in the studied pressure and temperature interval: FeS > FeN > FeC > FeH > Fe. A change in the unit-cell volume as compared to the known equations of state was used to estimate the hydrogen contents in carbide Fe3C and hydride FeHx. Data on hydride correspond to stoichiometry with x ≈ 1. Unlike iron sulfides and silicides, the solubility of hydrogen in Fe3C seemed to be negligibly low—within measurement error. Extrapolating obtained data to pressures of the Earth’s core indicates that carbon and hydrogen are mutually incpompatible in the iron–nickel core, while nitrogen easily substitutes carbon and may be an important component of the inner core in the light of the recent models assuming the predominance of iron carbide in its composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • V. E. Antonov, I. T. Belash, B. K. Ponomarev, E. G. Ponyatovski, and V. G. Thiessen, “Magnetic properties of hydrogen solid solutions in Fe–Ni–Mn alloys,” Phys. Stat. Solid. A 52, 703–710 (1979).

    Article  Google Scholar 

  • V. E. Antonov, I. T. Belash, and E. G. Ponyatovsky, “T–P phase diagram of the Fe–H system at temperatures to 450°C and pressures to 67 GPa,” Scripta Metallurgica 16, 203–208 (1982).

    Article  Google Scholar 

  • J. Badding, R. Hemley, and H. Mao, “High–pressure chemistry of hydrogen in metals: in situ study of iron hydride,” Science 253, 421–424 (1991).

    Article  Google Scholar 

  • J. Badro, A.S. Côté, and J. P. Brodholt “A seismologically consistent compositional model of Earth’s core,” Proc. Nat. Acad. Sci. 111(21), 7542–7545 (2014).

    Article  Google Scholar 

  • B. Chen, L. Gao, B. Lavina, P. Dera, E. Alp, E. J. Zhao, and J. Li, “Magneto–elastic coupling in compressed Fe7C3 supports carbon in Earth’s inner core,” Geophys. Res. Lett. 39, L18301, (2012). doi: 10.1029/2012gl052875

    Google Scholar 

  • D. L. Decker, “High–pressure equation of state for NaCl, KCl, and CsCl,” J. Appl. Phys. 42 (8), 3239–3244 (1973).

    Article  Google Scholar 

  • Y. Fukai, “From metal hydrides to the metal–hydrogen system,” J. Less-Common Met. 172, 8–19 (1991).

    Article  Google Scholar 

  • Y. Fukai, K. Mori, and H. Shinomiya, “The phase diagram and superabundant vacancy formation in Fe–H alloys under high hydrogen pressures,” J. Alloys Comp. 348 (1), 105–109 (2003).

    Article  Google Scholar 

  • N. Hirao, T. Kondo, E. Ohtani, K. Takemura, and T. Kikegawa, “Compression of iron hydride to 80 GPa and hydrogen in the Earth’s inner core,” Geophys. Res. Lett. 31 (6), L06616, (2004). doi: 10.1029/2003GL019380

    Article  Google Scholar 

  • J. C. Jamieson, J. N. Fritz, and M. H. Manghnani, “Pressure measurement at high temperature in X–ray diffraction studies: gold as a primary standard,” in High Pressure Research in Geophysics, Ed. by S. Akimoto and M. H. Manghnani (Center for Academic Publications, Tokyo, 1982), pp. 27–48.

    Chapter  Google Scholar 

  • T. Kawazoe and E. Ohtani, “Reaction between liquid iron and (Mg, Fe)SiO3–perovskite and solubilities of Si and O in molten iron at 27 GPa,” Phys. Chem. Mineral. 33 (3), 227–234(2006).

    Article  Google Scholar 

  • A. N. Krot, K. Keil, E. R. D. Scott, C. A. Goodrich, and M. K. Weisberg, “Classification of meteorites,” in Treatise on Geochemistry, Ed. by H.D. Holland and K.K. Turekian, (Elsevier–Pergamon, Oxford, 2003), Vol. 1, pp. 83–128.

    Google Scholar 

  • J. Li and Y. Fei, “Experimental constraints on core composition. Classification of meteorites,” in Treatise on Geochemistry. Ed. by H.D. Holland and K.K. Turekian, (Elsevier–Pergamon, Oxford, 2014), Vol. 3, 527–557.

    Article  Google Scholar 

  • K. D. Litasov and A. F. Shatskiy, “Composition of the Earth’s core: a review,” Russ. Geol. Geophys. 57 (1), 22–46 (2016a).

    Article  Google Scholar 

  • K. D. Litasov and A. F. Shatskiy, Composition and Structure of the Earth’s Core (SO RAN, Novosibirsk, 2016b) [in Russian].

    Google Scholar 

  • K. D. Litasov, I. S. Sharygin, P. I. Dorogokupets, A. Shatskiy, P. N. Gavryushkin, T. S. Sokolova, E. Ohtani, J. Li, and K. Funakoshi, “Thermal equation of state and thermodynamic properties of iron carbide Fe3C to 31 GPa and 1473 K,” J. Geophys. Res.: Solid Earth 118 (10), 5274–5284 (2013).

    Article  Google Scholar 

  • K. D. Litasov, A. F. Shatskiy, S. G. Ovchinnikov, Z. I. Popov, D. S. Ponomarev, and E. Ohtani, “Phase transformations of iron nitrides Fe3N–Fe4N studied by in situ X–ray diffractions,” JETP Lett. 98 (12), 805–808 (2014).

    Article  Google Scholar 

  • S. Minobe, Y. Nakajima, K. Hirose, and Y. Ohishi, “Stability and compressibility of a new iron–nitride ß–Fe7N3 to core pressures,” Geophys. Res. Lett. 42 (13), 5206–5211 (2015).

    Article  Google Scholar 

  • E. Ohtani, N. Hirao, T. Kondo, M. Ito, and T. Kikegawa, “Iron–water reaction at high pressure and temperature, and hydrogen transport into the core,” Phys. Chem. Mineral. 32 (1), 77–82 (2005).

    Article  Google Scholar 

  • Z. Popov, K. Litasov, P. Gavryushkin, S. Ovchinnikov, and A. Fedorov, “Theoretical study of γ'–Fe4N and ε–FexN iron nitrides at pressures up to 500 GPa,” JETP Letters 101 (6), 371–375 (2015).

    Article  Google Scholar 

  • C. Prescher, L. Dubrovinsky, E. Bykova, I. Kupenko, K. Glazyrin, A. Kantor, C. McCammon, M. Mookherjee, Y. Nakajima, and N. Miyajima, “High Poisson’s ratio of Earth’s inner core explained by carbon alloying,” Nature Geosci. 8 (3), 220–223 (2015).

    Article  Google Scholar 

  • K. Sakamaki, Takahashi, E. Nakajima, Y. Nishihara, Y. Funakoshi, K. Suzuki, T. and Fukai, Y. “Melting phase relation of FeHx up to 20 GPa: implication for the temperature of the Earth’s core,” Phys. Earth Planet. Inter. 174 (1), 192–201 (2009).

    Google Scholar 

  • A. Shatskiy, K. D. Litasov, H. Terasaki, T. Katsura, and E. Ohtani, “Performance of semi–sintered ceramics as pressure–transmitting media up to 30 GPa,” High Pressure Res. 30 (3), 443–450 (2010).

    Article  Google Scholar 

  • A. Shatskiy, T. Katsura, K. D. Litasov, A. V. Shcherbakova, Y. M. Borzdov, D. Yamazaki, A. Yoneda, E. Ohtani, and E. Ito, “High pressure generation using scaled–up Kawai–cell,” Phys. Earth Planet. Inter. 189 (1–2), 92–108 (2011).

    Article  Google Scholar 

  • A. Shatskiy, I. S. Sharygin, P. N. Gavryushkin, K. D. Litasov, Y. M. Borzdov, A. V. Shcherbakova, Y. Higo, K. Funakoshi, Y. N. Palyanov, and E. Ohtani, “The system K2CO3–MgCO3 at 6 GPa and 900–1450°C,” Am. Mineral. 98, 1593–1603 (2013).

    Article  Google Scholar 

  • Y. Shibazaki, E. Ohtani, H. Terasaki, R. Tateyama, T. Sakamaki, T. Tsuchiya, and K.–I. Funakoshi, “Effect of hydrogen on the melting temperature of FeS at high pressure: implications for the core of Ganymede,” Earth Planet. Sci. Lett. 301 (1), 153–158 (2011).

    Article  Google Scholar 

  • Y. Shibazaki, E. Ohtani, H. Fukui, T. Sakai, S. Kamada, D. Ishikawa, S. Tsutsui, A. Q. R. Baron, N. Nishitani, N. Hirao, and K. Takemura, “Sound velocity measurements in DHCP–FeH up to 70 GPa with inelastic X-ray scattering: implications for the composition of the Earth’s core,” Earth Planet. Sci. Lett. 313, 79–85 (2012).

    Article  Google Scholar 

  • T. S. Sokolova, P. I. Dorogokupets, and K. D. Litasov, “Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, b2–NaCl as well as Au, Pt, and other metals to 4 Mbar and 3000 K,” Russ. Geol. Geophys. 54 (2), 181–199 (2013).

    Article  Google Scholar 

  • H. Terasaki, Y. Shibazaki, T. Sakamaki, R. Tateyama, E. Ohtani, K.-I. Funakoshi, and Y. Higo, “Hydrogenation of FeSi under high pressure,” Am. Mineral. 96 (1), 93–99 (2011).

    Article  Google Scholar 

  • H. Terasaki, E. Ohtani, T. Sakai, S. Kamada, H. Asanuma, Y. Shibazaki, N. Hirao, N. Sata, Y. Ohishi, and T. Sakamaki, “Stability of Fe–Ni hydride after the reaction between Fe–Ni alloy and hydrous phase (δ–AlOOH) up to 1.2 Mbar: possibility of H contribution to the core density deficit,” Phys. Earth Planet. Inter. 194, 18–24 (2012).

    Article  Google Scholar 

  • H. Terasaki, Y. Shibazaki, K. Nishida, R. Tateyama, S. Takahashi, M. Ishii, Y. Shimoyama, E. Ohtani, K.-I. Funakoshi, and Y. Higo, “Repulsive nature for Hydrogen incorporation to Fe3C up to 14 GPa,” Isij Int. 54 (11), 2637–2642 (2014).

    Article  Google Scholar 

  • S. Urakawa, M. Morishima, T. Kato, A. Suzuki, and O. Shimomura, “Equation of state for h–BN,” Photon Factory Activity Report G275, 383–383 (1993).

    Google Scholar 

  • S. Urakawa, K. Someya, H. Terasaki, T. Katsura, S. Yokoshi, K. Funakoshi, W. Utsumi, Y. Katayama, Y. Sueda, and T. Irifune, “Phase relationships and equations of state for FeS at high pressures and temperatures and implications for the internal structure of Mars,” Phys. Earth Planet. Inter. 143, 469–479 (2004).

    Article  Google Scholar 

  • Y. Zhang and Q.-Z. Yin, “Carbon and other light element contents in the Earth’s core based on first–principles molecular dynamics,” Proc. Natl. Acad. Sci. U. S. A. 109 (48), 19579–19583 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Litasov.

Additional information

Original Russian Text © K.D. Litasov, A.F. Shatskiy, E. Ohtani, 2016, published in Geokhimiya, 2016, No. 10, pp. 944–951.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litasov, K.D., Shatskiy, A.F. & Ohtani, E. Interaction of Fe and Fe3C with hydrogen and nitrogen at 6–20 GPa: a study by in situ X-ray diffraction. Geochem. Int. 54, 914–921 (2016). https://doi.org/10.1134/S0016702916100074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916100074

Keywords

Navigation