Skip to main content
Log in

Deep differentiation of alkali ultramafic magmas: Formation of carbonatite melts

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The study of melt microinclusions in olivine megacrysts from meimechites and alkali picrites of the Maimecha–Kotui alkali ultramafic and carbonatite province (Polar Siberia) revealed that the melt compositions corrected for loss of olivine due to post-entrapment crystallization of olivine on inclusion walls (differentiates of primary meimechite magma) match well to the composition of nephelinites and olivine melilitites belonging to carbonatite magmatic series. Modeling of fractional crystallization of meimechite magmas results in the high-alkali melt compositions corresponding to the silicate–carbonate liquid immiscibility field. The appearance of volatile-rich melts at the base of magma-generating plume systems at early stages of partial melting can be explained by extraction of incompatible elements including volatiles, by near-solidus melts at low degrees of partial melting, and meimechites are an example of such magmas. Subsequent accumulation of CO2 in the residual melt results in generation of carbonate magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • G. P. Brey and I. D. Ryabchikov, “Carbon-dioxide in strongly silica undersaturated melts and origin of kimberlite magmas,” Neues Jhrb. Mineral.-Monatsh. 10, 449–463 (1994).

    Google Scholar 

  • P. Cartigny, F. Pineau, C. Aubaud, and M. Javoy, “Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14° N and 34° N),” Earth Planet. Sci. Lett. 265, 672–685 (2008).

    Article  Google Scholar 

  • L. S. Egorov, Ijolite–Carbonatite Plutonism: Evidence from the Maimecha–Kotui Complex, Polar Siberia (Nedra, Leningrad, 1991) [in Russian].

    Google Scholar 

  • A. V. Girnis, “Olivine–orthopyroxene–melt equilibrium as a thermobarometer for mantle-derived magmas,” Petrology 11, 115–127 (2003).

    Google Scholar 

  • J. Keller, A. N. Zaitsev, and D. Wiedenmann, “Primary magmas at Oldoinyo Lengai: the role of olivine melilitites,” Lithos 91, 150–172 (2006).

    Article  Google Scholar 

  • B. A. Kjarsgaard, “Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa,” J. Petrol. 39, 2061–2075 (1998).

    Article  Google Scholar 

  • L. N. Kogarko and I. D. Ryabchikov, “Geochemical evidence for meimechite magma generation in the subcontinental lithosphere of Polar Siberia,” J. Asian Earth Sci. 18, 195–203 (2000).

    Article  Google Scholar 

  • L. N. Kogarko and R. E. Zartman, “A Pb isotope investigation of the Guli massif, Maymecha-Kotuy alkalineultramafic complex, Siberian flood basalt province, Polar Siberia,” Mineral. Petrol. 89, 113–132 (2007).

    Article  Google Scholar 

  • L. N. Kogarko, “Role of CO2 on differentiation of ultramafic alkaline series: liquid immiscibility in carbonatebearing phonolitic dykes (Polar Siberia),” Mineral. Mag. 61, 549–556 (1997).

    Article  Google Scholar 

  • L. N. Kogarko, D. A. Plant, C. M. B. Henderson, B. A. Kjarsgaard, “Na-rich carbonate inclusions in perovskite and calzirite from the Guli intrusive Ca-carbonatite, polar Siberia,” Contrib. Mineral. Petrol. 109, 124–129 (1991).

    Article  Google Scholar 

  • J. E. Mungall, J. J. Hanley, N. T. Arndt, and A. Debecdelievre, “Evidence from meimechites and other lowdegree mantle melts for redox controls on mantle–crust fractionation of platinum-group elements,” Proc. Nat. Acad. Sci. 103, 12695–12700 (2006).

    Article  Google Scholar 

  • I. D. Ryabchikov, “Fluid regime of mantle plumes,” Geochem. Int. 41, 833–837 (2003)

    Google Scholar 

  • I. D. Ryabchikov, “Oxygen potential of high-magnesium magmas,” Dokl. Earth Sci. 448, 149–152 (2013).

    Article  Google Scholar 

  • I. D. Ryabchikov, and L. N. Kogarko, “A new version of the spinel–olivine–pyroxene oxybarometer and extreme redox differentiation in magmatic systems of mantle sources,” Dokl. Earth Sci. 430, 248–251 (2010).

    Article  Google Scholar 

  • I. D. Ryabchikov, and L. N. Kogarko, “Oxygen potential and PGE geochemistry of alkaline–ultramafic complexes,” Geol. Ore Deposits 54, 241–253 (2012).

    Article  Google Scholar 

  • I. D. Ryabchikov, and L. N. Kogarko, “FeO activity and oxygen potential in magnesian magmas,” Geochem. Int. (12), 949–958 (2013).

    Article  Google Scholar 

  • I. D. Ryabchikov, I. P. Solovova, L. N. Kogarko, G. P. Bray, Th. Ntaflos, and S. G. Simakin, “Thermodynamic parameters of generation of meymechites and alkaline picrites in the Maymecha–Kotui province: evidence from melt inclusions,” Geochem. Int. 40 (11), 1031–1041 (2002).

    Google Scholar 

  • I. D. Ryabchikov, L. N. Kogarko, and I. P. Solovova, “Physicochemical conditions of magma formation at the base of the Siberian plume: insight from the investigation of melt inclusions in the meymechites and alkali picrites of the Maimecha–Kotui Province,” Petrology 17, 287–299 (2009).

    Article  Google Scholar 

  • A. E. Saal, E. H. Hauri, C. H. Langmuir, and M. R. Perfit, “Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle,” Nature 419, 451–455 (2002).

    Article  Google Scholar 

  • V. A. Simonov, Yu. R. Vasiliev, S. I. Stupakov, A. V. Kotlyarov, and N. S. Karmanov, “Physicochemical parameters of crystallization of dunite from the Guli ultrabasic massif (Maimecha Kotui Province),” Dokl. Earth Sci. 464, 979–982 (2015).

    Article  Google Scholar 

  • A. V. Sobolev, S. V. Sobolev, D. V. Kuzmin, K. N. Malitch, and A. G. Petrunin, “Siberian meimechites: origin and relation to flood basalts and kimberlites,” Russ. Geol. Geophys. 50, 999–1033 (2009).

    Article  Google Scholar 

  • M. J. Walter, “Melting of garnet peridotite and the origin of komatiite and depleted lithosphere,” J. Petrol. 39, 29–60 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Ryabchikov.

Additional information

Original Russian Text © I.D. Ryabchikov, L.N. Kogarko, 2016, published in Geokhimiya, 2016, No. 9, pp. 771–779.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabchikov, I.D., Kogarko, L.N. Deep differentiation of alkali ultramafic magmas: Formation of carbonatite melts. Geochem. Int. 54, 739–747 (2016). https://doi.org/10.1134/S001670291609007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670291609007X

Keywords

Navigation