Skip to main content
Log in

Volatile and trace elements in alkaline and subalkaline melts of ocean islands: Evidence from inclusions in minerals and quenched glasses of rocks

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

Our database of published contents of volatile, major, and trace elements in melt inclusions in minerals and quenched glasses of volcanic rocks was used to calculate the mean compositions of alkaline and subalkaline melts of ocean islands. The data array included ~10300 determinations from more than 200 publications. The alkaline basic melts (mean Na2O + K2O is 4.75 wt %) are strongly enriched compared with the subalkaline melts (mean Na2O + K2O is 2.70 wt %) in volatile components (0.96 and 0.37 wt % H2O, 650 and 190 ppm Cl, 1480 and 320 ppm F, and 930 and 530 ppm S, respectively) and many trace elements. For instance, the alkaline and subalkaline melts contain 31.8 and 7.2 ppm Rb, 50.1 and 9.6 ppm Nb, and 39.9 and 5.7 ppm La, respectively. Such relations were not observed for V, Cr, Co, Cu, Ga, and Sc. As to the major elements, the alkaline melts show significantly higher contents of Ti, Fe, and P, but lower contents of Si and Mg compared with the subalkaline melts. The enrichment of the alkaline melts in many trace elements compared with the subalkaline melts is retained also in silicic melts. The distribution of trace elements suggests a higher contribution of pyroxenite material during the formation of alkaline melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • C. J. Allégre and D. L. Turcotte, “Implications of a two component marble-cake mantle,” Nature 323, 123–127 (1986).

    Article  Google Scholar 

  • A. T. Anderson and G. G. Brown, “CO2 contents and formation pressures of some Kilauean melt inclusions,” Am. Mineral. 78, 794–803 (1993).

    Google Scholar 

  • A. T. Anderson and T. L. Wright, “Phenocrysts and glass inclusions and their bearing on oxidation and mixing of basaltic magmas, Kilauea volcano, Hawaii,” Am. Mineral. 57, 188–216 (1972).

    Google Scholar 

  • R. Arevalo, Jr., W. F. McDonough, and M. Luong, “The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution,” Earth Planet. Sci. Lett. 278, 361–369 (2009).

    Article  Google Scholar 

  • H. Balcone-Boissard, B. Villemant, and G. Boudon, “Behavior of halogens during the degassing of felsic magmas,” Geochim. Geophys. Geosyst. 11(Q09005), 1–22 (2010).

    Google Scholar 

  • M. Barsanti, P. Papale, D. Barbato, R. Moretti, E. Boschi, E. Hauri, and A. Longo, “Heterogeneous large total CO2 abundance in the shallow magmatic system of Kilauea volcano, Hawaii,” J. Geophys. Res. 114 (B12201), 1–7 (2009).

    Google Scholar 

  • M. Brounce, M. Feineman, P. LaFemina, and A. Gurenko, “Insights into crustal assimilation by Icelandic basalts from boron isotopes in melt inclusions from the 1783–1784 Lakagigar eruption,” Geochim. Cosmochim. Acta 94, 164–180 (2012).

    Article  Google Scholar 

  • H. Bureau, N. Metrich, F. Pineau, and M. P. Semet, “Magma-conduit interaction at Piton de la Fournaise volcano (Reunion Island): a melt and fluid inclusion study,” J. Volcanol. Geotherm. Res. 84, 39–60 (1998a).

    Article  Google Scholar 

  • H. Bureau, F. Pineau, N. Metrich, M. P. Semet, and M. Javoy, “A melt and fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Reunion Island),” Chem. Geol. 147, 115–130 (1998b).

    Article  Google Scholar 

  • D. A. Clague and A. T. Calvert, “Postshield stage transitional volcanism on Mahukona Volcano, Hawaii,” Bull. Volcanol. 71, 533–539 (2009).

    Article  Google Scholar 

  • D. A. Clague, A. S. Davis, J. L. Bischoff, J. E. Dixon, and R. Geyer, “Lava bubble-wall fragments formed by submarine hydrovolcanic explosions on Lo’ihi Seamount and Kilauea Volcano,” Bull. Volcanol. 61, 437–449 (2000).

    Article  Google Scholar 

  • D. A. Clague, R. T. Holcomb, J. M. Sinton, R. S. Detrick, and M. E. Torresan, “Pliocene and Pleistocene alkalic flood basalts on the seafloor north of the Hawaiian islands,” Earth Planet. Sci. Lett. 98, 175–191 (1990).

    Article  Google Scholar 

  • D. A. Clague, J. G. Moore, J. E. Dixon, and W. B. Friesen, “Petrology of submarine lavas from Kilauea’s Puna Ridge, Hawaii,” J. Petrol. 36, 299–349 (1995).

    Article  Google Scholar 

  • M. L. Coombs, T. W. Sisson, and P. W. Lipman, “Growth history of Kilauea inferred from volatile concentrations in submarine-collected basalts,” J. Volcanol. Geotherm. Res. 151, 19–49 (2006).

    Article  Google Scholar 

  • B. Cushman, J. Sinton, G. Ito, and J. E. Dixon, “Glass compositions, plume-ridge interaction, and hydrous melting along the Galapagos Spreading Center, 90.5°W to 98°W,” Geochem. Geophys. Geosyst. 5 (8), 1–30 (2004).

    Article  Google Scholar 

  • M. G. Davis, M. O. Garcia, and P. Wallace, “Volatiles in glasses from Mauna Loa Volcano, Hawai’i: implications for magma degassing and contamination, and growth of Hawaiian volcanoes,” Contrib. Mineral. Petrol. 144, 570–591 (2003).

    Article  Google Scholar 

  • C. W. Devey, F. Albarede, J.-L. Cheminee, A. Michard, R. Muhe, and P. Stoffers, “Active submarine volcanism on the Society hotspot swell (West Pacific): a geochemical study,” J. Geophys. Res. 95 (B4), 5049–5066 (1990).

    Article  Google Scholar 

  • J. D. Devine, H. Sigurdsson, A. N. Davis, and S. Self, “Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects,” J. Geophys. Res. 89 (B7), 6309–6325 (1984).

    Article  Google Scholar 

  • J. E. Dixon and D. A. Clague, “Volatile in basaltic glasses from Loihi seamount, Hawaii: evidence for a relatively dry plume component,” J. Petrol. 42, 627–654 (2001).

    Article  Google Scholar 

  • J. Dixon, D. A. Clague, B. Cousens, M. L. Monsalve, and J. Uhl, “Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: Evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii,” Geochem. Geophys. Geosyst. 9 (9), 1–34 (2008).

    Article  Google Scholar 

  • J. E. Dixon, D. A. Clague, and E. M. Stolper, “Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea Volcano, Hawaii,” J. Geol. 99, 371–394 (1991).

    Article  Google Scholar 

  • V. Famin, B. Welsch, S. Okumura, P. Bachelery, and S. Nakashima, “Three differentiation stages of a single magma at Piton de la Fournaise volcano (Reunion hot spot),” Geochem. Geophys. Geosyst. 10 (Q01007) (2009).

    Google Scholar 

  • M. L. Frezzotti, T. Andersen, E.-R. Neumann, and S. L. Simonsen, “Carbonatite melt–CO2 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluidrock interaction in the upper mantle,” Lithos 64, 77–96 (2002).

    Article  Google Scholar 

  • M. O. Garcia, D. W. Muenow, K. E. Aggrey, and J. R. O’Neil, “Major element, volatile, and stable isotope geochemistry of Hawaiian submarine tholeiitic glasses,” J. Geophys. Res. 94 (B8), 10525–10538 (1989).

    Article  Google Scholar 

  • M. O. Garcia, A. J. Pietruszka, and J. M. Rhodes, “A petrologic perspective of Kilauea volcano’s summit magma reservoir,” J. Petrol. 44, 2313–2339 (2003).

    Article  Google Scholar 

  • M. O. Garcia, S. B. Sherman, G. F. Moore, R. Goll, I. Popova- Goll, J. H. Natland, and G. Acton “Frequent landslides from Koolau Volcano: Results from ODP Hole 1223A,” J. Volcanol. Geotherm. Res. 151, 251–268 (2006).

    Article  Google Scholar 

  • M.-N. Guilbaud, S. Blake, T. Thordarson, and S. Self, “Role of syn-eruptive cooling and degassing on textures of lavas from the AD 1783–1784 Laki eruption, South Iceland,” J. Petrol. 48, 1265–1294 (2007).

    Article  Google Scholar 

  • A. A. Gurenko and M. Chaussidon, “Boron concentrations and isotopic composition of the Icelandic mantle: evidence from glass inclusions in olivine,” Chem. Geol. 135, 21–34 (1997).

    Article  Google Scholar 

  • A. A. Gurenko and H.-U. Schmincke, “Geochemistry of sideromelane and felsic glass shards in Pleistocene ash layers at Sites 953, 954, and 956,” Proc. Ocean Drill. Progr., Sci. Res. 157, 421–428 (1998a).

    Google Scholar 

  • A. A. Gurenko and H.-U. Schmincke, “Petrology, geochemistry, S, CI, and F abundances, and S oxidation state of sideromelane glass shards from Pleistocene ash layers north and south of Gran Canaria (ODP Leg 157),” Contrib. Mineral. Petrol. 131, 95–110 (1998b).

    Article  Google Scholar 

  • A. A. Gurenko and H.-U. Schmincke, “S concentrations and its speciation in Miocene basaltic magmas north and south of Gran Canaria (Canary Islands): constraints from glass inclusions in olivine and clinopyroxene,” Geochim. Cosmochim. Acta 66, 903–911 (2000).

    Google Scholar 

  • A. A. Gurenko and A. V. Sobolev, “Crust-primitive magma interaction beneath neovolcanic rift zone of Iceland recorded in gabbro xenoliths from Midfell, SW Iceland,” Contrib. Mineral. Petrol. 151, 495–520 (2006).

    Article  Google Scholar 

  • A. A. Gurenko, T. H. Hansteen, and H.-U. Schmincke, “Melt, crystal, and fluid inclusions in olivine and clynopyroxene phenocrysts from the submarine shield stage hyaloclastites of Gran Canaria, Sites 953 and 956,” Proc. Ocean Drill. Progr., Sci. Res. 157, 375–401 (1998).

    Google Scholar 

  • J. E. Hammer, M. L. Coombs, P. J. Shamberger, and J.-I. Kimura, “Submarine sliver in North Kona: A window into the early magmatic and growth history of Hualalai Volcano, Hawaii,” J. Volcanol. Geotherm. Res. 151, 157–188 (2006).

    Article  Google Scholar 

  • H. Hansen and K. Gronvold, “Plagioclase ultraphyric basalts in Iceland: the mush of the rift,” J. Volcanol. Geotherm. Res. 98, 1–32 (2000).

    Article  Google Scholar 

  • T. H. Hansteen and A. A. Gurenko, “Sulfur, chlorine, and fluorine in glass inclusions in olivine and clynopyroxene from basaltic hyaloclastites representing the Gran Canaria shield stage at Sites 953 and 956,” Proc. Ocean Drill. Progr., Sci. Res. 157, 403–410 (1998).

    Google Scholar 

  • K. S. Harpp, D. J. Fornari, D. J. Geist, and M. D. Kurz, “Genovesa submarine ridge: a manifestation of plumeridge interaction in the northern Galapagos Islands,” Geochem. Geophys. Geosyst. 4 (9), 1–27 (2003).

    Article  Google Scholar 

  • S. R. Hart, “Heterogeneous mantle domains–signatures, genesis and mixing chronologies,” Earth Planet. Sci. Lett. 90, 273–296 (1988).

    Article  Google Scholar 

  • E. Hauri, “Major-element variability in the Hawaiian mantle plume,” Nature 382, 415–419 (1996).

    Article  Google Scholar 

  • E. Hauri, “SIMS analysis of volatiles in silicate glasses, 2: isotope and abundances in Hawaiian melt inclusions,” Chem. Geol. 183, 115–141 (2002).

    Article  Google Scholar 

  • A. W. Hofmann, “Mantle geochemistry: the message from oceanic volcanism,” Nature 385, 219–229 (1997).

    Article  Google Scholar 

  • M. G. Jackson and S. R. Hart, “Strontium isotopes in melt inclusions from Samoan basalts: Implications for heterogeneity in the Samoan plume,” Earth Planet. Sci. Let. 245, 260–277 (2006).

    Article  Google Scholar 

  • F. E. Jenner and H. St. C. O’Neill, “Analysis of 60 elements in 616 ocean floor basaltic glasses,” Geochem. Geophys. Geosyst. 13 (1), 1–11 (2012).

    Google Scholar 

  • V. S. Kamenetsky, A. A. Gurenko, and A. C. Kerr, “Composition and temperature of komatiite melts from Gorgona Island, Colombia, constrained from olivinehosted melt inclusions,” Geology 38, 1003–1006 (2010).

    Article  Google Scholar 

  • K. Kobayashi, R. Tanaka, T. Moriguti, K. Shimizu, and E. Nakamura, “Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume,” Chem. Geol. 212, 143–161 (2004).

    Article  Google Scholar 

  • A. M. Koleszar, A. E. Saal, E. H. Hauri, A. N. Nagle, Y. Liang, and M. D. Kurz, “The volatile contents of the Galapagos plume: evidence for H2O and F open system behavior in melt inclusions,” Earth Planet. Sci. Lett. 287, 442–452 (2009).

    Article  Google Scholar 

  • V. I. Kovalenko, V. B. Naumov, A. V. Girnis, V. A. Dorofeeva, and V. V. Yarmolyuk, “Composition and chemical structure of oceanic mantle plumes,” Petrology 14 (5), 452–476 (2006).

    Article  Google Scholar 

  • U. Kueppers, A. R. L. Nichois, V. Zanon, M. Potuzak, and J. M. R. Pacheco, “Lava balloons-peculiar products of basaltic submarine eruptions,” Bull. Volcanol. 74, 1379–1393 (2012).

    Article  Google Scholar 

  • T. Kuritani, T. Yokoyama, H. Kitagawa, K. Kobayasi, and E. Nakamura, “Geochemical evolution of historical lavas from Askja volcano, Iceland: implications for mechanisms and timescales of magmatic differentiation,” Geochim. Cosmochim. Acta 75, 570–587 (2011).

    Article  Google Scholar 

  • C. Lacasse, H. Sigurdsson, S. N. Carey, H. Johannesson, L. E. Thomas, and N. W. Rogers, “Bimodal volcanism at the Katla subglacial caldera, Iceland: insight into the geochemistry and petrogenesis of rhyolitic magmas,” Bull. Volcanol. 69, 373–399 (2007).

    Article  Google Scholar 

  • M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. A. Zanettin, “Chemical classification of volcanic rocks based on the total alkali-silica diagram,” J. Petrol. 27, 745–750 (1986).

    Article  Google Scholar 

  • J. MacLennan, “Concurrent mixing and cooling of melts under Iceland,” J. Petrol. 49, 1931–1953 (2008).

    Article  Google Scholar 

  • J. Maclennan, D. McKenzie, K. Gronvold, N. Shimizu, J. M. Eiler, and N. Kitchen, “Melt mixing and crystallization under Theistareykir, northeast Iceland,” Geochem. Geophys. Geosyst. 4 (8624), 1–40 (2003a).

    Google Scholar 

  • J. Maclennan, D. McKenzie, F. Hilton, K. Gronvold, and N. Shimizu, “Geochemical variability in a single flow from northern Iceland,” J. Geophys. Res. 108 (B1), 1–21 (2003b).

    Article  Google Scholar 

  • P. J. Michael, “Implications for magmatic processes at Ontong Java Plateau from volatile and major element contents of Cretaceous basalt glasses,” Geochem. Geophys. Geosyst. 1 (1999GC000025) (1999).

    Google Scholar 

  • S. Moune, O. Sigmarsson, P. Schiano, T. Thordarson, and J. K. Keiding, “Melt inclusion constraints on the magma source of Eyjafjallajokull 2010 flank eruption,” J. Geophys. Res. 117 (B00C07), 1–13 (2012).

    Google Scholar 

  • V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, and V. V. Yarmolyuk, “Average concentrations of major, volatile, and trace elements in magmas of various geodynamic settings,” Geochem. Int. 42 (10), 977–987 (2004).

    Google Scholar 

  • V. B. Naumov, V. I. Kovalenko, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Average compositions of igneous melts from main geodynamic settings according to the investigation of melt inclusions in minerals and quenched glasses of rocks,” Geochem. Int. 48 (12), 1185–1207 (2010).

    Article  Google Scholar 

  • V. B. Naumov, V. A. Dorofeeva, A. V. Girnis, and V. V. Yarmolyuk, “Comparison of major, volatile, and trace element contents in the melts of mid-ocean ridges on the basis of data on inclusions in minerals and quenched glasses of rocks,” Geochem. Int. 52 (5), 347–364 (2014).

    Article  Google Scholar 

  • E.-R. Neumann and E. Wulf-Pedersen, “The origin of highly silicic glass in mantle xenoliths from the Canary Islands,” J. Petrol. 38, 1513–1539 (1997).

    Article  Google Scholar 

  • A. R. L. Nichols and R. J. Wysoczanski, “Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals,” Chem. Geol. 242, 371–384 (2007).

    Article  Google Scholar 

  • R. L. Nielsen, “The effects of re-homogenization on plagioclase hosted melt inclusions,” Geochem. Geophys. Geosyst. 12 (10), 1–16 (2011).

    Article  Google Scholar 

  • I. K. Nikogosian, T. Elliott, and J. L. R. Touret “Melt evolution beneath thick lithosphere: a magmatic inclusion study of La Palma, Canary Island,” Chem. Geol. 183, 169–193 (2002).

    Article  Google Scholar 

  • M. D. Norman, M. O. Garcia, V. S. Kamenetsky, and R. L. Nielsen, “Olivine-hosted melt inclusions in Hawaiian picrites: equilibration, melting, and plume source characteristics,” Chem. Geol. 183, 143–168 (2002).

    Article  Google Scholar 

  • B. A. Oladottir, O. Sigmarsson, G. Larsen, and T. Thordarson “Katla volcano, Iceland: magma composition, dynamics and eruption frequency as recorded by Holocene tephra layers,” Bull. Volcanol. 70, 475–493 (2008).

    Article  Google Scholar 

  • J. Owen, H. Tuffen, and D. W. McGarvie, “Explosive subglacial rhyolitic eruptions in Iceland are fuelled by high magmatic H2O and closed-system degassing,” Geology 41, 251–254 (2013).

    Article  Google Scholar 

  • F. Parat, F. Holtz, and A. Klugel, “S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas,” Contrib. Mineral. Petrol. 162, 463–478 (2011).

    Article  Google Scholar 

  • M. Pertermann, M. M. Hirschmann, K. Hametner, D. Gunther, and M. W. Schmidt, “Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite,” Geochem., Geophys., Geosyst. 5 (2004). doi 10.1029/2003GC000638

    Google Scholar 

  • A. R. Philpotts, “Compositions of immiscible liquids in volcanic rocks,” Contrib. Mineral. Petrol. 80, 201–218 (1982).

    Article  Google Scholar 

  • M. Portnyagin, K. Hoernle, S. Storm, N. Mironov, C. van den Bogaard and R. Bocharnikov, “H2O-rich melt inclusions in fayalitic olivine from Hekla volcano: Implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland,” Earth Planet. Sci. Lett. 357–358, 337–346 (2012).

    Article  Google Scholar 

  • Z-Y. Ren, S. Ingle, E. Takahashi, N. Hirano, and T. Hirata “The chemical structure of the Hawaiian mantle plume,” Nature 436 (11), 837–840 (2005).

    Article  Google Scholar 

  • C. I. Schipper, J. D. L. White, B. F. Houghton, N. Shimizu, and R. B. Stewart, ““Poseidic” explosive eruptions at Loihi Seamount, Hawaii,” Geology 38, 291–294 (2010a).

    Article  Google Scholar 

  • C. I. Schipper, J. D. L. White, B. F. Houghton, N. Shimizu, and R. B. Stewart, “Explosive submarine eruptions driven by volatile-coupled degassing at Loihi Seamount, Hawai’I,” Earth Planet. Sci. Lett. 295, 497–510 (2010b).

    Article  Google Scholar 

  • C. Schipper, J. White, and B. F. Houghton, “Textural, geochemical, and volatile evidence for a Strombolian-like eruption sequence at Lo’ihi Seamount, Hawai’I,” J. Volcanol. Geotherm. Res. 207, 16–32 (2011).

    Article  Google Scholar 

  • K. Sharma, S. Self, S. Blake, T. Thordarson, and G. Larsen, “The AD 1362 Oraefajokull eruption, S.E. Iceland: physical volcanology and volatile release,” J. Volcanol. Geotherm. Res. 178, 719–739 (2008).

    Article  Google Scholar 

  • K. Shimizu, N. Shimizu, T. Komiya, K. Suzuki, S. Maruyama, and Y. Tatsumi, “CO2-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia,” Earth Planet. Sci. Lett. 288, 33–43 (2009).

    Article  Google Scholar 

  • O. Sigmarsson, D. Laporte, M. Carpentier, B. Devouard, J.-L. Devidal, and J. Marti, “Formation of U-depleted rhyolite from a basanite at El Hierro, Canary Islands,” Contrib. Mineral. Petrol. 165, 601–622 (2013).

    Article  Google Scholar 

  • V. A. Simonov, V. V. Zolotukhin, S. V. Kovyazin, A. I. Almukhamedov, and A. Ya. Medvedev, “Petrogenesis of basaltic series of the Ontong Java oceanic plateau and the Nauru Basin, Pacific Ocean,” Petrology 12, 163–175 (2004).

    Google Scholar 

  • V. A. Simonov, S. V. Kovyazin, Yu. R. Vasil’ev, and J. Mahoney, “Physicochemical parameters of continental and oceanic plateau-basalt magmatic systems (from data on melt inclusion),” Russ. Geol. Geophys. 46, 886–903 (2005).

    Google Scholar 

  • V. A. Simonov, I. Yu. Safonova, S. V. Kovyazin and A. V. Kotlyarov, “Physico-chemical parameters of Neoproterozoic and Early Cambrian plume magmatism in the paleo-Asian ocean (data on melt inclusions),” Russ. Geol. Geophys. 51, 507–519 (2010).

    Article  Google Scholar 

  • T. W. Sisson, J.-I. Kimura, and M. L. Coombs, “Basanitenephelinite suite from early Kilauea: carbonated melts of phlogopite-garnet peridotite at Hawaii’s leading magmatic edge,” Contrib. Mineral. Petrol. 158, 803–829 (2009).

    Article  Google Scholar 

  • L. Slater, D. McKenzie, K. Gronvold, and N. Shimizu, “Melt generation and movement beneath Theistareykir, NE Iceland,” J. Petrol. 42, 321–354 (2001).

    Article  Google Scholar 

  • A. V. Sobolev and I. K. Nikogosyan, “Petrology of magmatism of long-term mantle jets: Hawaiian islands (Pacific Ocean) and Reunion Island (Indian Ocean),” Petrologiya 2, 171–168 (1994).

    Google Scholar 

  • A. V. Sobolev, A. W. Hofmann, K. P. Jochum, D. V. Kuzmin, and B. Stoll, “A young source for the Hawaiian plume,” Nature 476 (7361), 434–437 (2011).

    Article  Google Scholar 

  • I. P. Solovova, A. V. Girnis, I. D. Ryabchikov, and N. N. Kononkova, “Melts of the post-shield stage of Mauna Kea Volcano, Hawaii: evidence from inclusions in minerals of the high-mg basalt,” Geochem. Int. 40 (12), 1146–1161 (2002).

    Google Scholar 

  • E. Stolper, S. Sherman, M. Garcia, M. Baker, and C. Seaman “Glass in the submarine section of the HSDP2 drill core, Hilo, Hawaii,” Geochem. Geophys. Geosyst. 5 (7), 1–67 (2004).

    Article  Google Scholar 

  • A. Stracke, “Earth’s heterogeneous mantle: A product of convection-driven interaction between crust and mantle,” Chem. Geol. 330–331, 274–299 (2012).

    Article  Google Scholar 

  • N. A. Stroncik and K. M. Haase, “Chlorine in oceanic intraplate basalts: constraints on mantle source and recycling processes,” Geology 32, 945–948 (2004).

    Article  Google Scholar 

  • S. S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Sp. Publ., London. 42, 313–345 (1989).

    Google Scholar 

  • A. Thomson and J. Maclennan, “The distribution of olivine compositions in Icelandic basalts and picrites,” J. Petrol. 54, 745–768 (2013).

    Article  Google Scholar 

  • Th. Thordarson, S. Self, N. Oskarsson, and T. Hulsebosch “Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftar Fires) eruption in Iceland,” Bull. Volcanol. 58, 205–225 (1996).

    Article  Google Scholar 

  • N. Vigouroux, A. E. Williams-Jones, P. Wallace, and T. Staudacher, “The November 2002 eruption of Piton de la Fournaise, Reunion: tracking the pre-eruptive thermal evolution of magma using melt inclusions,” Bull. Volcanol. 71, 1077–1089 (2009).

    Article  Google Scholar 

  • B. Villemant, A. Salauen, and T. Staudacher, “Evidence for a homogeneous primary magma at Piton de la Fournaise (La Reunion): A geochemical study of matrix glass, melt inclusions and Pele’s hairs of the 1998–2008 eruptive activity,” J. Volcanol. Geotherm. Res. 184, 79–92 (2009).

    Article  Google Scholar 

  • I. Vlastelic, G. Menard, A. Gannoun, J.-L. Piro, T. Staudacher, and V. Famin, “Magma degassing during the April 2007 collapse of Piton de la Fournaise: the record of semi-volatile trace elements (Li, B, Cu, In, Sn, Cd, Re, Tl, Bi),” J. Volcan. Geotherm. Res. 254, 94–107 (2013).

    Article  Google Scholar 

  • P. Wallace and I. S. E. Carmichael, “Sulfur in basic magmas,” Geochim. Cosmochim. Acta 56, 1863–1874 (1992).

    Article  Google Scholar 

  • R. K. Workman, S. R. Hart, M. Jackson, M. Regelous, K. A. Farley, J. Blusztajn, M. Kurz, and H. Staudigel, “Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: evidence from the Samoan volcanic chain,” Geochem. Geophys. Geosyst. 5 (4), 1–44 (2004).

    Article  Google Scholar 

  • R. K. Workman, E. Hauri, S. R. Hart, J. Wang, and J. Blusztain, “Volatile and trace elements in basaltic glasses from Samoa: Implications for water distribution in the mantle,” Earth Planet. Sci. Lett. 241, 932–951 (2006).

    Article  Google Scholar 

  • R. K. Workmann and S. R. Hart, “Major and trace element composition of the depleted MORB mantle (DMM),” Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  Google Scholar 

  • E. Wulff-Pedersen, E.-R. Neumann, R. Vannucci, P. Bottazzi, and L. Ottolini, “Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands,” Contrib. Mineral. Petrol. 137, 59–82 (1999).

    Article  Google Scholar 

  • A. Zindler, S. R. Hart, F. A. Frey, and S. P. Jakobsson, “Nd and Sr isotope ratios and rare earth elements abundances in Reykjanes Peninsula basalts: evidence for mantle heterogeneity beneath Iceland,” Earth Planet. Sci. Lett. 45, 249–262 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Naumov.

Additional information

Original Russian Text © V.B. Naumov, V.A. Dorofeeva, A.V. Girnis, 2016, published in Geokhimiya, 2016, No. 6, pp. 558–573.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, V.B., Dorofeeva, V.A. & Girnis, A.V. Volatile and trace elements in alkaline and subalkaline melts of ocean islands: Evidence from inclusions in minerals and quenched glasses of rocks. Geochem. Int. 54, 543–558 (2016). https://doi.org/10.1134/S0016702916040066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702916040066

Keywords

Navigation