Skip to main content
Log in

Dependence of the Properties of a Turbulent Cascade behind the Bow Shock on the Dynamics of the Solar Wind Parameters

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

The magnetosheath is an integral element of solar–terrestrial relations. The paper analyzes the influence of the solar wind parameters and their variability, as well as the topology of the bow shock on the characteristics of plasma turbulence in the magnetosheath on scales corresponding to the transition from the inertial region of a turbulent cascade to the dissipative one. The analysis is based on extensive statistics of measurements of the BMSW instrument with high time resolution on board the Spektr-R satellite in the magnetosheath in 2011–2018. It is shown that the variability of the solar wind plasma density and the interplanetary magnetic field magnitude, as well as the angle between the normal to the bow shock and the interplanetary magnetic field has the greatest influence on the form of the turbulent cascade directly behind the bow shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bruno, R. and Carbone, V., The solar wind as a turbulence laboratory, Living Rev. Sol. Phys., 2003, vol. 10, id 2.

  2. Alexandrova, O., Chen, C.H.K., Sorriso-Valvo, L., et al., Solar wind turbulence and the role of ion instabilities, Space Sci. Rev., 2013, vol. 178, pp. 101–139.

    Article  ADS  Google Scholar 

  3. Kolmogorov, A.N., The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, no. 4, pp. 299–304.

    ADS  MathSciNet  Google Scholar 

  4. Goldreich, P. and Sridhar, S., Toward a theory of interstellar turbulence. 2: Strong Alfvénic turbulence, Astrophys. J., 1995, vol. 438, pp. 763–775. https://doi.org/10.1086/175121

    Article  ADS  Google Scholar 

  5. Goldreich, P. and Sridhar, S., MHD turbulence revisited, Astrophys. J., 1997, vol. 485, no. 2, pp. 680–688.

    Article  ADS  Google Scholar 

  6. Czaykowska, A., Bauer, T.M., Treumann, R.A., and Baumjohann, W., Magnetic field fluctuations across the Earth’s bow shock, Ann. Geophys., 2001, vol. 19, no. 3, pp. 275–287. https://doi.org/10.5194/angeo-19-275-2001

    Article  ADS  Google Scholar 

  7. Huang, S.Y., Hadid, L.Z., Sahraoui, F., et al., On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence, Astrophys. J. Lett., 2017, vol. 836, no. 1, id L10.

  8. Kozak, L.V., Pilipenko, V.A., Chugunova, O.M., and Kozak, P.N., Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath, Cosmic Res., 2011, vol. 49, no. 3, pp. 194–204.

    Article  ADS  Google Scholar 

  9. akhmanova, L., Riazantseva, M., Zastenker, G., and Verigin, M., Kinetic-scale ion flux fluctuations behind the quasi-parallel and quasi-perpendicular bow shock, J. Geophys. Res.: Space Phys., 2018, vol. 123, pp. 5300–5314. 10.1029/2018JA02517

    Article  ADS  Google Scholar 

  10. Rakhmanova, L.S., Riazantseva, M.O., Zastenker, G.N., and Verigin, M.I., Effect of the magnetopause and bow shock on characteristics of plasma turbulence in the Earth’s magnetosheath, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 6, pp. 718–727.

  11. Rakhmanova, L.S., Riazantseva, M.O., Zastenker, G.N., et al., Turbulent cascade in the magnetosheath affected by the solar wind’s plasma turbulence, Cosmic. Res., 2019, vol. 57, no. 6, pp. 443–450.

    Article  ADS  Google Scholar 

  12. Macek, W.M., Krasinska, A., Silveira, M.V.D., et al., Magnetospheric multiscale observations of turbulence in the magnetosheath on kinetic scales, Astrophys. J., 2018, vol. 864, id L27.

  13. Zastenker, G.N., Šafránková, J., Němeček, Z., et al., Fast measurements of parameters of the solar wind using the BMSW instrument, Cosmic. Res., 2013, vol. 51, no. 2, pp. 78–89.

    Article  ADS  Google Scholar 

  14. Šafránková, J., Němeček, Z., Přech, L., Zastenker, G., et al., Fast solar wind monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, nos. 1–4, pp. 165–182.

    Article  ADS  Google Scholar 

  15. Leamon, R.J., Matthaeus, W.H., Smith, C.W., et al., MHD-driven kinetic dissipation in the solar wind and corona, Astrophys. J., 2000, vol. 537, no. 2, pp. 1054–1062. https://doi.org/10.1086/309059

    Article  ADS  Google Scholar 

  16. Smith, C.W., Mullan, D.J., Ness, N.F., et al., Day the solar wind almost disappeared: Magnetic field fluctuations, wave refraction and dissipation, J. Geophys. Res., 2001, vol. 106, pp. 18625–18634. https://doi.org/10.1029/2001JA000022

    Article  ADS  Google Scholar 

  17. Howes, G.G., Cowley, S.C., Dorland, W., et al., A model of turbulence in magnetized plasmas: Implications for the dissipation range in the solar wind, J. Geophys. Res., 2008, vol. 113, A05103.

    Article  ADS  Google Scholar 

  18. Schekochihin, A.A., Cowley, S.C., Dorland, W., et al., Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J. Suppl. Ser., 2009, vol. 182, pp. 310–377. https://doi.org/10.1088/0067-0049/182/1/310

    Article  ADS  Google Scholar 

  19. Rakhmanova, L., Riazantseva, M., and Zastenker, G., Plasma fluctuations at the flanks of the Earth’s magnetosheath at ion kinetic scales, Ann. Geophys., 2016, vol. 34, pp. 1011–1018.

    Article  ADS  Google Scholar 

  20. Markovskii, S.A., Vasquez, B.J., and Smith, C.W., Statistical analysis of the high-frequency spectral break of the solar wind turbulence at 1 AU, Astrophys. J., 2008, vol. 675, no. 2, pp. 1576–1583. https://doi.org/10.1086/527431

    Article  ADS  Google Scholar 

  21. Šafránková, J., Němeček, Z., Němec, F., Přech, L., Chen, C.H.K., and Zastenker, G.N., Power spectral density of fluctuations of bulk and thermal speeds in the solar wind, Astrophys. J., 2016, vol. 825, id 121. https://doi.org/10.3847/0004-637X/825/2/121

  22. Verigin, M.I., Tatrallyay, M., Erdos, G., and Kotova, G.A., Magnetosheath–interplanetary medium reference frame: Application for a statistical study of mirror type waves in the terrestrial plasma environment, Adv. Space Res., 2006, vol. 37, no. 3, pp. 515–521. https://doi.org/10.1016/j.asr.2005.03.042

    Article  ADS  Google Scholar 

  23. Shue, J.-H., Song, P., Russell, C.T., et al., Magnetopause location under extreme solar wind conditions, J. Geophys. Res.: Space Phys., 1998, vol. 103, no. A8, pp. 17691–17700. https://doi.org/10.1029/98JA01103

    Article  ADS  Google Scholar 

  24. Verigin, M.I., Kotova, G.A., Slavin, J., et al., Analysis of the 3-D shape of the terrestrial bow shock by interball/magion 4 observations, Adv. Space Res., 2001, vol. 28, no. 6, pp. 857–862. https://doi.org/10.1016/S0273-1177(01)00502-6

    Article  ADS  Google Scholar 

  25. Ogilvie, K.W., Chornay, D.J., Fritzenreiter, R.J., et al., SWE, a comprehensive plasma instrument for the wind spacecraft, Space Sci. Rev., 1995, vol. 71, nos. 1–4, pp. 55–77. https://doi.org/10.1007/BF00751326

    Article  ADS  Google Scholar 

  26. Lepping, R.P., Acuña, M.H., Burlaga, L.F., et al., The wind magnetic field investigation, Space Sci. Rev., 1995, vol. 71, nos. 1–4, pp. 207–229. https://doi.org/10.1007/BF00751330

    Article  ADS  Google Scholar 

  27. Shevyrev, N.N. and Zastenker, G.N., Some features of the plasma flow in the magnetosheath behind quasi-parallel and quasi-perpendicular bow shocks, Planet. Space Sci., 2005, vol. 53, nos. 1–3, pp. 95–102. https://doi.org/10.1016/j.pss.2004.09.033

    Article  ADS  Google Scholar 

  28. Riazantseva, M.O., Budaev, V.P., Zelenyi, L.M., et al., Dynamic properties of small-scale solar wind plasma fluctuations, Philos. Trans. R. Soc. A, 2015, vol. 373, no. 2041, pp. 20140146–20140146. https://doi.org/10.1098/rsta.2014.0146

    Article  ADS  Google Scholar 

  29. Greenstadt, E.W., Binary index for assessing local bow shock obliquity, J. Geophys. Res., 1972, vol. 77, no. 28, pp. 5467–5479. https://doi.org/10.1029/JA077i028p05467

    Article  ADS  Google Scholar 

  30. Formisano, V., Orientation and shape of the Earth’s bow shock in three dimensions, Planet. Space Sci., 1979, vol. 27, no. 9, pp. 1151–1161. https://doi.org/10.1016/0032-0633(79)90135-1

    Article  ADS  Google Scholar 

  31. Riazantseva, M.O., Rakhmanova, L.S., Zastenker, G.N., et al., Small-scale plasma fluctuations in fast and slow solar wind streams, Cosmic Res., 2019, vol. 57, no. 6, pp. 434–442.

    Article  ADS  Google Scholar 

  32. Boldyrev, S. and Perez, J.C., Spectrum of kinetic-Alfvén turbulence, Astrophys. J., 2012, vol. 758, no. 2, id L44.

  33. Šafránková, J., Němeček, Z., Němec, F., Přech, L., Pitňa, A., Chen, C.H.K., and Zastenker, G.N., Solar wind density spectra around the ion spectral break, Astrophys. J., 2015, vol. 803, id 107. https://doi.org/10.1088/0004-637X/803/2/107

  34. Yermolaev, Yu.I., Nikolaeva, N.S., Lodkina, I.G., and Yermolaev, M.Yu., Catalog of large-scale solar wind phenomena during 1976–2000, Cosmic Res., 2009, vol. 47, no. 2, pp. 81–94.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to their colleagues at the Space Research Institute, Russian Academy of Sciences; Lavochkin Association; and Charles University (Prague, Czech Republic) for help in development, adjustment, calibration, and flight control, as well as for collection, transmission, and primary processing of scientific data from the BMSW instrument.

Funding

The work was supported by the Russian Foundation for Basic Research, grant no. 19-02-00177.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Rakhmanova.

Additional information

Translated by N. Topchiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhmanova, L.S., Riazantseva, M.O., Zastenker, G.N. et al. Dependence of the Properties of a Turbulent Cascade behind the Bow Shock on the Dynamics of the Solar Wind Parameters. Cosmic Res 58, 478–486 (2020). https://doi.org/10.1134/S0010952520060088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952520060088

Navigation