Skip to main content
Log in

Simulation of Synthesis of Matrix–Inclusion Composite Materials during Combustion

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A model for synthesizing a composite during combustion is proposed and numerically investigated. It is assumed that a set of chemical conversions can be described by a kinetic scheme with two total parallel reactions. One of the reactions corresponds to the matrix synthesis, and the other one to the inclusion synthesis. It is taken into account that the mixture components melt in a certain temperature range rather than at a fixed melting point. The possibility of the reaction front propagation in a self-oscillating mode is shown. The critical values of the parameters that separate the stationary and self-oscillating modes of the reaction front propagation are revealed. Computational results in limiting cases correspond to known theoretical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. G. Liu, K. Chen, and J. Li, “Combustion Synthesis: An Effective Tool for Preparing Inorganic Materials," Scripta Materialia 157, 167–173 (2018); DOI: 10.1016/j.scriptamat.2018.08.022.

    Article  Google Scholar 

  2. K. C. Patil, S. T. Aruna, and T. Mimani, “Combustion Synthesis: An Update," Curr. Opin. Solid State Mater. Sci. 6 (6), 507–512 (2002); DOI: 10.1016/S1359-0286(02)00123-7.

    Article  ADS  Google Scholar 

  3. E. A. Levashov, A. S. Mukasyan, A. S. Rogachev, and D. V. Shtansky, “Self-Propagating High-Temperature Synthesis of Advanced Materials and Coatings," Int. Mater. Rev. 62 (4), 203–239 (2017); DOI: 10.1080/09506608.2016.1243291.

    Article  Google Scholar 

  4. S. Vorotilo, E. A. Levashov, V. V. Kurbatkina, et al., “Self-Propagating High-Temperature Synthesis of Nanocomposite Ceramics TaSi2–SiC with Hierarchical Structure and Superior Properties," J. Eur. Ceram. Soc. 38 (2), 433–443 (2018); DOI: 10.1016/j.jeurceramsoc.2017.08.015.

    Article  Google Scholar 

  5. G. H. Liu, J. T. Li, and K. Chen, “Combustion Synthesis of Refractory and Hard Materials: A Review," Int. J. Refract. Met. Hard Mater. 39, 90–102 (2013); DOI: 10.1016/j.ijrmhm.2012.09.002.

    Article  Google Scholar 

  6. A. G. Merzhanov, “Self-Propagating High-Temperature Synthesis: Twenty Years of Research and Findings," in Combustion and Plasma Synthesis of High-Temperature Materials, Ed. by Z. Munir and J. B. Holt (VCH, New York, 1990).

  7. A. G. Merzhanov and B. I. Khaikin, Theory of Combustion Waves in Homogeneous Media (Merzhanov Inst. of Struct. Macrokinet. and Mater. Sci., Russian Acad. of Sci., Chernogolovka, 1992) [in Russian].

  8. A. G. Merzhanov, Combustion Processes and the Synthesis of Materials (Merzhanov Inst. of Struct. Macrokinet. and Mater. Sci., Russian Acad. of Sci., Chernogolovka, 1998) [in Russian].

  9. A. G. Merzhanov and A. S. Mukas’yan, Solid Flame Combustion (Torus Press, Moscow, 2007) [in Russian].

    Google Scholar 

  10. A. P. Aldushin, “Stationary Propagation of an Exothermic-Reaction Front in a Condensed Medium," Prikl. Mekh. Tekh. Fiz. 15 (3), 96–105 (1974) [J. Appl. Mech. Tech. Phys. 15 (3), 363–370 (1974)].

    Article  ADS  Google Scholar 

  11. A. S. Mukasyan and A. S. Rogachev, “Discrete Reaction Waves: Gasless Combustion of Solid Powder Mixtures," Prog. Energy Combust. Sci. 34 (3), 377–416 (2008); DOI: 10.1016/j.pecs.2007.09.002.

    Article  Google Scholar 

  12. E. V. Okolovich et al., “Propagation of the Combustion Zone in Melting Condensed Mixtures," Fiz. Goreniya Vzryva 13 (3), 326–335 (1977) [Combust., Expl., Shock Waves 13 (3), 264–272 (1977)].

    Article  Google Scholar 

  13. A. P. Aldushin, A. G. Merzhanov, and B. I. Khaikin, “Combustion of Condensed Systems with Refractory Reaction Products," Dokl. Akad. Nauk SSSR 204 (5), 1139–1142 (1972).

  14. A. P. Aldushin, S. G. Kasparyan, and K. G. Shkadinskii, “Propagation of the Exothermal Reaction Front in Condensed Mixtures Forming Two-Phase Products," in Combustion and Explosion, IV All-Union Symposium on Combustion and Explosion (Nauka, Moscow, 1977) [in Russian].

  15. E. A. Nekrasov, Yu. M. Maksimov, and A. P. Aldushin, “Calculation of Critical Thermal Explosion Conditions in Hafnium-Boron and Tantalumcarbon Systems Using State Diagrams," Fiz. Goreniya Vzryva 16 (3), 113–120 (1980) [Combust., Expl., Shock Waves 16 (3), 342–347 (1980)].

    Article  Google Scholar 

  16. E. A. Nekrasov, V. K. Smolyakov, and Yu. M. Maksimov, “Mathematical Model for the Titanium–Carbon System Combustion," Fiz. Goreniya Vzryva 17 (5), 39–46 (1981) [Combust., Expl., Shock Waves 17 (5), 513–520 (1981)].

    Article  Google Scholar 

  17. V. A. Andreev, E. A. Levashov, V. M. Mal’tsev, and N. N. Khavskii, “Characteristics of Capillary Mass Transfer in a Combustion Wave in Multicomponent Heterogeneous Systems," Fiz. Goreniya Vzryva 24 (2), 73–77 (1988) [Combust., Expl., Shock Waves 24 (2), 189–193 (1988)].

    Article  Google Scholar 

  18. D. S. Shults and A. Yu. Krainov, “Numerical Simulation of Gasless Combustion Taking into Account the Heterogeneity of the Structure and the Temperature Dependence of Diffusion," Fiz. Goreniya Vzryva 48 (5), 142–147 (2012) [Combust., Expl., Shock Waves 48 (5), 620–624 (2012)].

    Article  Google Scholar 

  19. A. Yu. Krainov and D. S. Shults, “Mathematical Simulation of SHS in Heterogeneous Reacting Powder Mixtures," Komp. Issl. Model. 3 (2), 147–153 (2011).

    Google Scholar 

  20. O. B. Kovalev and V. A. Neronov, “Metallochemical Analysis of the Reaction in a Mixture of Nickel and Aluminum Powders," Fiz. Goreniya Vzryva 40 (2), 52–60 (2004) [Combust., Expl., Shock Waves 40 (2), 172–179 (2004)].

    Article  Google Scholar 

  21. B. B. Khina, B. Formanek, and I. Solpan, “Limits of Applicability of the Diffusion-Controlled Product Growth Kinetic Approach to Modeling SHS," Physica B: Condens. Matter. 355 (1–4), 14–31 (2005); DOI: 10.1016/j.physb.2004.09.104.

    Article  ADS  Google Scholar 

  22. B. B. Khina, “Interaction Kinetics in SHS: Is the Quasi-Equilibrium Solid-State Diffusion Model Valid?," Int. J. Self-Propag. High-Temp. Synth. 14 (1), 21–31 (2005).

    Google Scholar 

  23. B. B. Khina, “Modeling Nonisothermal Interaction Kinetics in the Condensed State: A Diagram of Phase Formation Mechanisms for the Ni–Al System," J. Appl. Phys. 101 (6), 063510 (2007); DOI: 10.1063/1.2710443.

    Article  ADS  Google Scholar 

  24. M. A. Anisimova and A. G. Knyazeva, “Influence of the Kinetics of Transition Zone Formation between the Particle and the Matrix on Effective Properties of the Composite," AIP Conf. Proc. 2167, 020018 (2019); DOI: 10.1063/1.5131885.

  25. M. A. Anisimova, A. G. Knyazeva, and I. B. Sevostianov, “Evolution of the Effective Elastic Properties of Metal Matrix Composites during the Synthesis," Int. J. Eng. Sci. 153, 103307 (2020); DOI: 10.1016/j.ijengsci.2020.103307.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. G. Prokof’ev and V. K. Smolyakov, “Effect of Melting of Inert Components and Melt Flow on Nonstationary Combustion of Gasless Systems," Fiz. Goreniya Vzryva 54 (1), 27–32 (2018) [Combust., Expl., Shock Waves 54 (1), 24–29 (2018)]; DOI: 10.1134/S0010508218010057].

    Article  Google Scholar 

  27. Y. Dimitrienko, “Mathematical Modelling of Ceramic Composite Processing Based on Combustion," Math. Comput. Model. 21 (8), 69–83 (1995); DOI: 10.1016/0895-7177(95)00040-9.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. B. Borovikov, I. A. Burovoi, and U. I. Gol’dshleger, “Combustion Wave Propagation in Systems of Sequential Reactions with Endothermal Stages," Fiz. Goreniya Vzryva 20 (3), 3–10 (1984) [Combust., Expl., Shock Waves 20 (3), 241–248 (1984)].

    Article  Google Scholar 

  29. V. S. Berman, Yu. S. Ryazantsev, and V. M. Shevtsova, “Nonsteady Propagation of Two-Stage Sequential Reaction in the Condensed Phase," Fiz. Goreniya Vzryva 17 (6), 72–76 (1981) [Combust., Expl., Shock Waves 17 (6), 646–649 (1981)].

    Article  Google Scholar 

  30. M. B. Borovikov and U. I. Gol’dshleger, “Singularities in the Development of a Thermal Explosion during the Progress of Sequential Reactions with Endothermal Stages," Fiz. Goreniya Vzryva 17 (5), 106–112 (1981) [Combust., Expl., Shock Waves 17 (5), 575–580 (1981)].

    Article  Google Scholar 

  31. E. A. Nekrasov and A. M. Timokhin, “Theory of Thermal Wave Propagation of Multistage Reactions Described by Simple Empirical Schemes," Fiz. Goreniya Vzryva 22 (1), 48–55 (1986) [Combust., Expl., Shock Waves 22 (1), 431–437 (1986)].

  32. A. G. Merzhanov, È. N. Rumanov, and B. I. Khaikin, “Multizone Combustion of Condensed Systems," Prikl. Mekh. Tekh. Fiz. 13 (6), 99–105 (1972) [J. Appl. Mech. Tech. Phys. 13 (6), 845–850 (1972)].

    Article  ADS  Google Scholar 

  33. K. G. Shkadinskii, B. I. Khaikin, and A. G. Merzhanov, “Propagation of a Pulsating Exothermic Reaction Front in the Condensed Phase," Fiz. Goreniya Vzryva 7 (1), 19–28 (1971) [Combust., Expl., Shock Waves 7 (1), 15–22 (1971)].

    Article  Google Scholar 

  34. B. I. Khaikin and S. I. Khudyaev, Nonuniqueness of a Steady Combustion Wave (Chernogolovka, 1981) [in Russian].

    Google Scholar 

  35. E. A. Nekrasov and A. M. Timokhin, “Theory of Multistage Combustion with an Endothermic Reaction," Fiz. Goreniya Vzryva 20 (4), 21–28 (1984) [Combust., Expl., Shock Waves 20 (4), 377–383 (1984)].

  36. I. P. Borovinskaya, A. G. Merzhanov, N. P. Novikov, and A. K. Filonenko, “Gasless Combustion of Mixtures of Powdered Transition Metals with Boron," Fiz. Goreniya Vzryva 10 (1), 4–15 (1974) [Combust., Expl., Shock Waves 10 (1), 2–10 (1974)].

    Article  Google Scholar 

  37. V. I. Yukhvid et al., “Combustion of Chemical Transformations in Thermite Systems with Two Active Reducing Agents," Fiz. Goreniya Vzryva 51 (4), 46–50 (2015) [Combust., Expl., Shock Waves 51 (4), 439–443 (2015); DOI: 10.1134/S0010508218010057].

    Article  Google Scholar 

  38. V. L. Radishevskii, O. K. Lepakova, and N. I. Afanas’ev, “Synthesis, Structure, and Properties of MAX Phases of Ti3SiC2 and Nb2AlC," Vestn. Tom. Gos. Univ. Khim, No. 1, 33–38 (2015).

  39. Y. Khoptiar and I. Gotman, “Synthesis of Dense Ti3SiC2-Based Ceramics by Thermal Explosion under Pressure," J. Eur. Ceram. Soc. 23 (1), 47–53 (2003); DOI: 10.1016/S0955-2219(02)00076-6.

    Article  Google Scholar 

  40. D. Shan, G. Yan, L. Zhou, et al., “Synthesis of Ti3SiC2 Bulks by Infiltration Method," J. Alloys Compd. 509 (8), 3602–3605 (2011); DOI: 10.1016/j.jallcom.2010.12.092.

    Article  Google Scholar 

  41. S. Sambasivan and W. T. Petuskey, “Phase Relationships in the Ti–Si–C System at High Pressures," J. Mater. Res. 7 (6), 1473–1479 (1992); DOI: 10.1557/JMR.1992.1473.

    Article  ADS  Google Scholar 

  42. S. G. Vadchenko, A. E. Sychev, D. Yu. Kovalev, et al., “Structure Formation in the Ti–Si–C System during Self-Propagating High-Temperature Synthesis," Ross. Nanotekhnol. 10 (1–2), 61–65 (2015).

    Google Scholar 

  43. C. L. Yeh and Y. C. Chen, “Effects of PTFE Activation and Carbon Sources on Combustion Synthesis of Cr2AlC/Al2O3 Composites," Ceram. Int. 44 (1), 384–389 (2018); DOI: 10.1016/j.ceramint.2017.09.187.

    Article  Google Scholar 

  44. C. L. Yeh and Y. C. Chen, “Combustion Synthesis of NbB2-spinel MgAl2O4 Composites from MgO-Added Thermite-Based Reactants with Excess Boron," Crystals 10 (3), 210 (2020); DOI: 10.3390/cryst10030210.

    Article  Google Scholar 

  45. I. D. Kovalev, P. A. Miloserdov, V. A. Gorshkov, and D. Yu. Kovalev, “Synthesis of Nb2AlC MAX Phase by SHS Metallurgy," Izv. Izv. Vyssh. Uchebn. Zaved. Poroshk. Metallurg. Funkts. Pokr., No. 2, 42–48 (2019) [Russian J. Non-Ferrous Metals 61 (1), 126–131 (2020)]; DOI: 10.17073/1997-308X-2019-2-42-48.

    Article  Google Scholar 

  46. P. A. Miloserdov, V. A. Gorshkov, I. D. Kovalev, and D. Yu. Kovalev, “High-Temperature Synthesis of Cast Materials Based on Nb2AlC MAX Phase," Ceram. Int. 45 (2), 2689–2691 (2019); DOI: 10.1016/j.ceramint.2018.10.198.

    Article  Google Scholar 

  47. C. L. Yeh and Y. C. Chen, “Fabrication of MoSi2–MgAl2O4 In Situ Composites by Combustion Synthesis Involving Intermetallic and Aluminothermic Reactions," Vacuum 167, 207–213 (2019); DOI: 10.1016/j.vacuum.2019.06.014.

    Article  ADS  Google Scholar 

  48. L. Y. Sheng, F. Yang, T. F. Xi, et al., “Microstructure Evolution and Mechanical Properties of Ni3Al/Al2O3 Composite during Self-Propagation High-Temperature Synthesis and Hot Extrusion," Mater. Sci. Eng. A 555, 131–138 (2012); DOI: 10.1016/j.msea.2012.06.042.

    Article  Google Scholar 

  49. T. W. B. Riyadi, T. Zhang, D. Marchant, and X. Zhu, “NiAl–TiC–Al2O3 Composite Formed by Self-Propagation High-Temperature Synthesis Process: Combustion Behaviour, Microstructure, and Properties," J. Alloys Compd. 805, 104–112 (2019); DOI: 10.1016/j.jallcom.2019.04.349.

    Article  Google Scholar 

  50. B. T. Khaikin and A. O. Merzhanov, “Theory of Thermal Propagation of a Chemical Reaction Front," Fiz. Goreniya Vzryva 2 (3), 36–46 (1966) [Combust., Expl., Shock Waves 2 (3), 22–27 (1966)].

    Article  Google Scholar 

  51. A. G. Knyazeva and V. E. Zarko, “Initiation of the Decomposition of a Semi-Transparent Mixture of Energetic Materials," Fiz. Goreniya Vzryva 54 (1), 108–117 (2018) [Combust., Expl., Shock Waves 54 (1), 97–105 (2018); 10.1134/S0010508218010148].

    Article  Google Scholar 

  52. A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al., Physical Quantities: Manual, Ed. by I. S. Grigor’ev and E. Z. Meilikhova (Energoatomizdat, Moscow, 1991) [in Russian].

  53. I. M. Poletika, T. A. Krylova, M. V. Tetyutskaya, and S. A. Makarov, “Formation of the Structure of Wear-Resisting Coatings in Electron Beam Deposition of Tungsten Carbide," Welding Int. 27 (7), 508–515 (2013); DOI: 10.1080/09507116.2012.715946.

    Article  Google Scholar 

  54. I. M. Poletika, T. A. Krylova, Yu. F. Ivanov, et al., “Fabrication of Reinforcing Nanostructured Coatings by Electron Beam Processing," Prot. Met. Phys. Chem. Surf. 48 (2), 221–232 (2012); DOI: 10.1134/S2070205112020153.

    Article  Google Scholar 

  55. I. M. Poletika, Yu. F. Ivanov, M. G. Golkovskii, et al., “Development of a New Class of Coatings by Double Electron-Beam Surfacing," Inorg. Mater.: Appl. Res. 2 (5), 531–539 (2011). DOI: 10.1134/S2075113311050169.

    Article  Google Scholar 

  56. A. P. Aldushin, T. M. Martem’yanova, A. G. Merzhanov, et al., “Autovibrational Propagation of the Combustion Front in Heterogeneous Condensed Media," Fiz. Goreniya Vzryva 9 (5), 613–626 (1973) [Combust., Expl., Shock Waves 9 (5), 531–542 (1973)].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Chumakov or A. G. Knyazeva.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 4, pp. 93-105.https://doi.org/10.15372/FGV20210410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakov, Y.A., Knyazeva, A.G. Simulation of Synthesis of Matrix–Inclusion Composite Materials during Combustion. Combust Explos Shock Waves 57, 467–478 (2021). https://doi.org/10.1134/S0010508221040109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221040109

Keywords

Navigation