Skip to main content
Log in

Modal Stability of a Cylindrical Flame Front in an Annular Combustion Chamber in the Presence of Entropy Waves

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An initial (linear) stage in the development of rotating transverse detonation waves in a flat-radial annular combustion chamber is determined and simulated. The problem of linear modal stability of the cylindrical front of Chapman–Jouguet deflagration combustion in a radially diverging subsonic flow with a small Mach number in the presence of perturbation waves of the flow entropy is solved. The steady flame front is described by discontinuity of the gas-dynamic parameters provided that the combustion products are in chemical equilibrium. It is revealed that the flame front is unstable for some types of small perturbations of the main flow of the combustible mixture and the flame front. Instability is determined under the condition of a constant flow rate in the mixture injection system. The spatial forms of oscillations and perturbation waves of the combustion front in the annular combustion chamber are obtained by numerical and analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. K. I. Shchelkin and Ya. K. Troshin, Gasdynamics of Combustion (Izd. Akad. Nauk SSSR, Moscow, 1963; National Aeronautics and Space Administration, 1964).

    Google Scholar 

  2. B. V. Voitsekhovskii, “Spin Detonation," Dokl. Akad. Nauk SSSR 114 (4), 717–720 (1957).

    Google Scholar 

  3. B. V. Voitsekhovskii, “Stationary Detonation," Dokl. Akad. Nauk SSSR 129 (6), 1254–1256 (1959).

    Google Scholar 

  4. B. V. Voitsekhovskii, “Spin Stationary Detonation," Prikl. Mekh. Tekh. Fiz., No. 3, 157–164 (1960).

    Google Scholar 

  5. V. V. Mikhailov and M. E. Topchiyan, “Study of Continuous Detonation in an Annular Channel," Fiz. Goreniya Vzryva 1 (4), 20–23 (1965) [Combust., Expl., Shock Waves 1 (4), 20–23 (1965)].

    Article  Google Scholar 

  6. F. A. Bykovskii and S. A. Zhdan, Continuous Spin Detonation (Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2013) [in Russian].

    Google Scholar 

  7. L. Filyand, G. I. Sivashinsky, and M. L. Frankel, “On Self-Acceleration of Outward Propagating Wrinkled Flames," Physica D: Nonlinear Phenomena 72 (1/2), 110–118 (1994).

    Article  ADS  Google Scholar 

  8. S. S. Minaev, E. A. Pirogov, and O. V. Sharypov, “A Nonlinear Model for Hydrodynamic Instability of an Expanding Flame," Fiz. Goreniya Vzryva 32 (5), 8–16 (1996) [Combust., Expl., Shock Waves 32 (5), 481–488 (1996)].

    Google Scholar 

  9. A. V. Trilis, A. A. Vasiliev, and S. V. Sukhinin, “Traveling Circumferential Unstable Wave of Cylindrical Flame Front," J. Phys.: Conf. Ser. 722 (2016); DOI: 10.1088/1742-6596/722/1/012039.

    Article  Google Scholar 

  10. A. V. Trilis, S. V. Sukhinin, and A. A. Vasil’ev, “Stability of the Cylindrical Flame Front in an Annular Combustion Chamber," Sib. Zh. Indust. Mat. 20 (4), 67–79 (2017) [J. Appl. Indust. Math. 11 (4), 605–617 (2017).

    Article  MathSciNet  Google Scholar 

  11. V. V. Mitrofanov, Detonation of Homogeneous and Heterogeneous Systems (Lavrent’ev Inst. of Hydrodyn., Sib. Branch, Russian Acad. of Sci., Novosibirsk 2003) [in Russian].

  12. B. V. Raushenbakh, Vibrational Combustion (Fizmatlit, Moscow, 1961; Foreign Technol. Div., Air Force Systems Command, Depart. of Commerce, 1963).

  13. A. A. Vasiliev and A. V. Trilis, “Velocity of Deflagration Combustion at High Pressures and Temperatures," Teplofiz. Aeromekh. 20 (5), 615–622 (2013) [Thermophys. Aeromech. 20 (5), 605–612 (2013)].

    Article  Google Scholar 

  14. A. V. Trilis, Acoustic Vibrations and Stability of a Cylindrical Combustion Front in a Flat-Radial Annular Combustion Chamber (Lavrent’ev Institute of Hydrodynamics Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2017) [in Russian].

  15. G. G. Chernyi, Gas Dynamics (Nauka, Moscow, 1988; CRC Press, 1994).

  16. G. H. Markstein, “Experimental and Theoretical Studies of Flame-Front Stability," J. Aeronaut. Sci. 18 (3) (1951).

    Article  Google Scholar 

  17. D. I. Blokhintsev, Acoustics of a Moving Nonhomogeneous Medium (Nauka–Fizmatlit, Moscow, 1981) [in Russian].

    Google Scholar 

  18. A. A. Vasil’ev, “Assessment of the Flame Velocity As a Function of Pressure and Temperature," Fiz. Goreniya Vzryva 47 (5), 13–17 (2011) [Combust., Expl., Shock Waves 47 (5), 508–512 (2011); DOI: 10.1134/S0010508211050029].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Trilis.

Additional information

Translated from Fizika Goreniya i Vzryva, 2021, Vol. 57, No. 4, pp. 38-47.https://doi.org/10.15372/FGV20210404.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trilis, A.V. Modal Stability of a Cylindrical Flame Front in an Annular Combustion Chamber in the Presence of Entropy Waves. Combust Explos Shock Waves 57, 415–423 (2021). https://doi.org/10.1134/S0010508221040043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508221040043

Keywords

Navigation