Skip to main content
Log in

Spallation affected fracture pattern of a titanium alloy plate subjected to linear shaped charge jet penetration

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

In this paper, the commercial finite element code LS-DYNA is employed to simulate the process of a certain kind of a linear shaped charge jet penetrating into a TC4 (Ti–6Al–4V) titanium alloy plate of moderate thickness. The fracture profiles agree well with experimental observations, which confirms the validity of the code and the Johnson–Cook material model applied to describe the TC4 plate. The fracture pattern of the plate is drawn based on this comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. L. Feng, M. B. Liu, H. Q. Li, and G. R. Liu, “Smoothed Particle Hydrodynamics Modeling of Linear Shaped Charge with Jet Formation and Penetration Effects,” Computers Fluids 86, 77–85 (2013).

    Article  MATH  Google Scholar 

  2. C. Yu, Y. Tong, C. Yan, et al., “Applied Research of Shaped Charge Technology,” Int. J. Impact Eng. 23 (1), 981–988 (1999).

    Article  Google Scholar 

  3. J. F. Molinari, “Finite Element Simulation of Shaped Charges,” Finite Elements in Analysis and Design. 38 (10), 921–936 (2002).

    Article  MATH  Google Scholar 

  4. S. Lim, “Steady State Equation of Motion of a Linear Shaped Charges Liner,” Int. J. Impact Eng. 44, 10–16 (2012).

    Article  Google Scholar 

  5. M. Johnston and S. Lim, “Numerical Observation of the Jet Flight Patterns of Linear Shaped Charges,” Appl. Sci. 2 (3), 629 (2012).

    Article  Google Scholar 

  6. R. Cornish, J. T. Mills, J. P. Curtis, and D. Finch, “Degradation Mechanisms in Shaped Charge Jet Penetration,” Int. J. Impact Eng. 26, 105–114 (2001).

    Article  Google Scholar 

  7. J. K. Yi, X. Q. Jiang, and H. Peng, “Effect of Initiation Ways on Jet Formation of Linear Shaped Charge,” Chin. J. Explos. Propel. 29 (3), 57–61 (2006).

    Google Scholar 

  8. O. Ayisit, “The Influence of Asymmetries in Shaped Charge Performance,” Int. J. Impact Eng. 35 (12), 1399–1404 (2008).

    Article  Google Scholar 

  9. Q. Ning, X. Fang, and M. X.Wang, “Effect of Asymmetry on Linear Shaped Charge (in Chinese),” J. Ballistics 23 (2), 96–100 (2011).

    Google Scholar 

  10. Y. H. Cui, W. Q. Wan, Q. Tian, X. S. Tang, and Z. W. Deng, “Optimization Design of Linear Shaped Charge,” Initiators Pyrotech. 15 (4), 42–46 (2006).

    Google Scholar 

  11. W. A. Gooch, M. S. Burkins, W. P. Walters, A. A. Kozhushko, and A. B. Sinani, “Target Strength Effect on Penetration by Shaped Charge Jets,” Int. J. Impact Eng. 26, 243–248 (2001).

    Article  Google Scholar 

  12. H. Y. Ma, Y. Long, and Y. Y. He, “Numerical Analysis on Effects of Burst Height on Penetration Depth of LSCC,” Initiators Pyrotech. 17 (4), 28–32 (2008).

    Google Scholar 

  13. G. Yang, X. Han, and D. Hu, “Computer Simulation of Two-Dimensional Linear-Shaped Charge Jet Using Smoothed Particle Hydrodynamics,” Eng. Comput. 28 (1), 58–75 (2011).

    Article  MATH  Google Scholar 

  14. M. B. Liu, G. R. Liu, K. Y. Lam, and Z. Zong, “Meshfree Particle Simulation of the Detonation Process for High Explosives in Shaped Charge Unlined Cavity Configurations,” Shock Waves 12 (6), 509–520 (2003).

    Article  ADS  Google Scholar 

  15. H. F. Qiang, K. P. Wang, and W. R. Gao, “Numerical Simulation of Shaped Charge Jet Using Multi-Phase SPH Method,” J. Tianjin Univ. 14 (1), 495–499 (2008).

    Article  Google Scholar 

  16. S. Z. Zhang, Explosion and Impact Dynamics (The Publ. House of Ordnance Indust., Beijing, 1993) [in Chinese].

    Google Scholar 

  17. L. L. Wang, Foundations of Stress Waves (Elsevier, Oxford, 2007).

  18. G. Kay, “Failure Modeling of Titanium-61–4V and 2024-T3 Aluminum with the Johnson–Cook Material Model,” Tech. Report (Lawrence Livermore Nat. Lab., Livermore, 2002).

    Book  Google Scholar 

  19. J. O. Hallquist, LS-DYNA Keyword User’s Manual (Version 970) (Livermore Software Technol. Corp., California, 2003).

    Google Scholar 

  20. J. O. Hallquist, LS-DYNA Theoretical Manual (Livermore Software Technol. Corp., California, 1998).

    Google Scholar 

  21. M. J. Mullin and B. J. O’Toole, “Simulation of Energy Absorbing Materials in Blast Loaded Structures,” in 8th Int. LS-DYNA Users Conf. (Michigan, 2004).

    Google Scholar 

  22. D. R. Lesuer, “Experimental Investigations of Material Models for Ti–6Al–4V Titanium and 2024-T3 Aluminum,” Tech. Report (Lawrence Livermore Nat. Lab., 1999).

    Book  Google Scholar 

  23. S. R. Yun, Explosion Mechanics (National Defend Industry Press, Beijing, 2005) [in Chinese].

    Google Scholar 

  24. Z. X. Huang, Theory and Practice of Shaped Charge, (Beijing Inst. Technol. Press, Beijing, 2014) [in Chinese].

    Google Scholar 

  25. P. A. Du Bois, S. Kolling, M. Feucht, A. Haufe, and A. G. DaimlerChrysler, “A Comparative Review of Damage and Failure Models and a Tabulated Generalization,” in 6th European LS-DYNA User’s Conf. (Gothenburg, Sweden, 2007).

    Google Scholar 

  26. M. Lobdell, B. Croop, and H. Lobo, “Comparison of Crash Models for Ductile Plastics,” in 10th European LS-DYNA User’s Conf. (Würzburg, Germany, 2015).

    Google Scholar 

  27. “Viscoplastic Strain Rate Formulation (VP),” in LSDYNA Support, http://www.dynasupport.com/howtos/ material/viscoplastic-strain-rate-formulation-vp.

  28. M. Storheim and J. Amdahl, “On the Sensitivity to Work Hardening and Strain-Rate Effects in Nonlinear FEM Analysis of Ship Collisions,” Ships Offshore Structures (2015); DOI: 10.1080/17445302.2015.1115181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-Zh. Lyu.

Additional information

Original Russian Text © D.-Zh. Lyu, W.-R. Hong, M.-Ch. Yuan, H.-J. Xuan

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 3, pp. 129–137, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, DZ., Hong, WR., Yuan, MC. et al. Spallation affected fracture pattern of a titanium alloy plate subjected to linear shaped charge jet penetration. Combust Explos Shock Waves 53, 362–369 (2017). https://doi.org/10.1134/S0010508217030169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217030169

Keywords

Navigation