Skip to main content
Log in

Synthesis, XRD and DFT studies of a novel cocrystal energetic perchlorate amine salt: Methylamine triethylenediamine triperchlorate

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper reports the synthesis, experimental and theoretical studies of a novel inorganic-organic cocrystal energetic material: methylamine triethylenediamine triperchlorate (MT). MT is synthesized by a rapid “one-pot” method. The performance test of MT shows that it is more powerful and has lower sensitivity in comparison to the benchmark energetic material, i.e., 2,4,6-trinitrotoluen (TNT). The molecular and crystal structures of MT are determined by means of x-ray diffraction (XRD). The compound crystallizes in a monoclinic system (space group Pn) with cell dimensions a = 8.975(18), b = 17.836(4), and c = 10.455(2) Å. The band structure and the density of states are calculated by an abbreviated form of the CASTEP code. The first principle tight-binding method within the general gradient approximation is used to study the electronic band structure, density of states, and Fermi energy. The results indicate that the main mechanism of cocrystallization originates from the Cl—O ···H hydrogen bonding between —ClO4 and —NH2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Badgujar, M. Talawar, S. Asthana, and P. Mahulikar, “Advances in Science and Technology of Modern Energetic Materials: an Overview,” J. Hazard. Mater. 151 (2), 289–305 (2008).

    Article  Google Scholar 

  2. B. M. Rice, J. J. Hare, and E. F. C. Byrd, “Accurate Predictions of Crystal Densities Using Quantum Mechanical Molecular Volumes,” J. Phys. Chem. A 111 (42), 10874–10879 (2007).

    Article  Google Scholar 

  3. A. A. Dippold, D. Izsak, and T. M. Klapotke, “A Study of 5-(1,2,4-triazol-c-yl)tetrazol-1-ols: Combining the Benefits of Different Heterocycles for the Design of Energetic Materials,” Chem.-Eur. J. 19 (36), 12042–12051 (2013).

    Article  Google Scholar 

  4. H. Xue, Y. Gao, B. Twamley, and J. M. Shreeve, “Energetic Azolium Azolate Salts,” Inorg. Chem. 44 (14), 5068–5072 (2005).

    Article  Google Scholar 

  5. P. Yin, D. A. Parrish, and J. M. Shreeve, “Energetic Multifunctionalized Nitraminopyrazoles and Their Ionic Derivatives: Ternary Hydrogen-Bond Induced High Energy Density Materials,” J. Amer. Chem. Soc. 137 (14), 4778–4786 (2015).

    Article  Google Scholar 

  6. V. D. Ghule, “Computational Screening of Nitrogen- Rich Energetic Salts Based on Substituted Triazinem” J. Phys. Chem. C 117 (33), 16840–16849 (2013).

  7. J. Zhang and J. M. Shreeve, “3,3—Dinitroamino-4,4— azoxyfurazan and Its Derivatives: An Assembly of Diverse N—O Building Blocks for High-Performance Energetic Materials,” J. Amer. Chem. Soc. 136 (11), 4437–4445 (2014).

    Article  Google Scholar 

  8. A. E. van der Heijden, R. H. Bouma, and A. C. van der Steen, “Physicochemical Parameters of Nitramines Influencing Shock Sensitivity,” Propell., Explos., Pyrotech. 29 (5), 304–313 (2004).

    Article  Google Scholar 

  9. A. K. Sikder and N. Sikder, “A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Spplications,” J. Hazard. Mater. 112 (2), 1–15 (2004).

    Article  Google Scholar 

  10. H. Lin, S. G. Zhu, L. Zhang, et al., “Intermolecular Interactions, Thermodynamic Properties, Crystal Structure, and Detonation Performance of HMX/NTO Cocrystal Explosive,” Int. J. Quantum Chem. 113 (10), 1591–1599 (2013).

    Article  Google Scholar 

  11. C. Guo, H. Zhang, X. Wang, et al., “Crystal Structure and Explosive Performance of a New CL-20/Caprolactam Cocrystal,” J. Mol. Struct. 1048 (24), 267–273 (2013).

    Article  ADS  Google Scholar 

  12. J. P. Shen, X. H. Duan, Q. P. Luo, et al., “Preparation and Characterization of a Novel Cocrystal Explosive,” Cryst. Growth Des. 11 (5), 1759–1765 (2011).

    Article  Google Scholar 

  13. J. F. Remenar, S. L. Morissette, M. L. Peterson, et al., “Crystal Engineering of Novel Cocrystals of a Triazole Drug with 1,4-Dicarboxylic Acids,” J. Amer. Chem. Soc. 125 (28), 8456–8457 (2003).

    Article  Google Scholar 

  14. D. R. Weyna, T. Shattock, P. Vishweshwar, and M. J. Zaworotko, “Synthesis and Structural Characterization of Cocrystals and Pharmaceutical Cocrystals: Mechanochemistry vs Slow Evaporation from Solution,” Cryst. Growth Des. 9 (2), 1106–1123 (2009).

    Article  Google Scholar 

  15. C. Y. Zhang, Z. W. Yang, X. Q. Zhou, et al., “Evident Hydrogen Bonded Chains Building CL-20-Based Cocrystals,” Cryst. Growth Des. 14 (8), 3923–3928 (2014).

    Article  Google Scholar 

  16. D. Millar, H. Maynard-Casely, D. Allan, et al., “Crystal Engineering of Energetic Materials: Co-Crystals of CL-20,” Crystengcomm. 14 (10), 3742–3749 (2012).

    Article  Google Scholar 

  17. K. B. Landenberger and A. J. Matzger, “Cocrystal Engineering of a Prototype Energetic Material: Supramolecular Chemistry of 2,4,6-trinitrotoluene,” Cryst. Growth Des. 10 (12), 5341–5347 (2010).

    Article  Google Scholar 

  18. O. Bolton and A. J. Matzger, “Improved Stability and Smart-Material Functionality Realized in an Energetic Cocrystal,” Angew. Chem. Int. Edit. 50 (38), 8960–8963 (2011).

    Article  Google Scholar 

  19. K. B. Landenberger and A. J. Matzger, “Cocrystals of 13,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX),” Cryst. Growth Des. 12 (7), 3603–3609 (2012).

    Article  Google Scholar 

  20. O. Bolton, L. R. Simke, P. F. Pagoria, and A. J. Matzger, “High Power Explosive Withgood Sensitivity: A 2:1 Cocrystal of CL-20: HMX,” Cryst. Growth Des. 12 (9), 4311–4314 (2012).

    Article  Google Scholar 

  21. H. Lin, S h.-G. Zhu, and L. Zhang, “Theoretical Investigation of a Novel High Density Cage Compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15-pentaazaheptacyclo[5.5.1.13,11.15,9] pentadecane,” J. Mol. Model. 19 (3), 1019–1026 (2013).

    Article  Google Scholar 

  22. H. Lin, Sh.-G. Zhu, and H.-Zh. Li, “Synthesis, Characterization, AIM and NBO Analysis of HMX/DMI Cocrystal Explosive,” J. Mol. Struct. 1048 (24), 339–348 (2013).

    Article  ADS  Google Scholar 

  23. H. Lin, P.-Y. Chen, and Sh. Zhu, “Computational Study of Pyrazine-Based Derivatives and TheirN-Oxides As High Energy Materials,” J. Phys. Org. Chem. 16 (6), 484–491 (2013).

    Article  Google Scholar 

  24. H. Lin, P.-Y. Chen, Sh.-G. Zhu, et al., “Theoretical Studies on the Thermodynamic Properties, Densities, Detonation Properties, and Pyrolysis Mechanisms of Trinitromethyl-Substituted Aminotetrazole Compounds,” J. Mol. Model. 19 (6), 2413–2422 (2013).

    Article  Google Scholar 

  25. D. Guo, Q. An, S. V. Zybin, et al., “The Co-Crystal of TNT/CL-20 Leads to Decreased Sensitivity Toward Thermal Decomposition from First Principles Based Reactive Molecular Dynamics,” J. Mater. Chem. A. 3 (10), 5409–5419 (2015).

    Article  Google Scholar 

  26. P. Ma, L. Zhang, Sh. Zhu, and H. Chen, “Synthesis, Crystal Structure and DFT Calculation of an Energetic Perchlorate Amine Salt,” J. Cryst. Growth. 335 (1), 70–74 (2011).

    Article  ADS  Google Scholar 

  27. P. Ma, L. Zhang, S h.-G. Zhu, and H.-H. Chen, “Synthesis, Structural Investigaqtion, Thermal Destruction, and Properties of a Cocrystal Energetic Perchlorate Amine Salt,” Fiz. Goreniya Vzryva 48 (4), 123–128 (2012) [Combust., Expl., Shock Waves 48 (4), 483–487 (2012)].

    Google Scholar 

  28. G. M. Sheldrick, SHELXL-97. Program for the Refining of Crystal Structure (Univ. of Göttingen, 1997).

    Google Scholar 

  29. M. D. Segall, P. J. D. Lindan, and M. J. Probert, “First-Principles Simulation: Ideas, Illustrations and the CASTEP Code,” J. Phys. 14 (11), 2717–2744 (2002).

    Google Scholar 

  30. T. H. Fischer and J. Almlof, “General Methods for Geometry and Wave Function Optimization,” J. Phys. Chem. 96 (24), 9768–9774 (1992).

    Article  Google Scholar 

  31. M. Anniyappan, S. H. Sonawane, S. J. Pawar, and A. K. Sikder, “Thermal Decomposition and Kinetics of 2,4-dinitroimidazole: An Insensitive High Explosive,” Thermochim. Acta 614, 93–99 (2015).

    Article  Google Scholar 

  32. W. H. Zhu, J. J. Xiao, G. F. Ji, F. Zhao, and H. M.Xiao, “First-Principles Study of the Four Polymorphs of Crystalline Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine,” J. Phys. Chem. B 111 (44), 12715–12722 (2007).

    Article  Google Scholar 

  33. M. M. Kuklja, E. V. Stefanovich, and A. B. Kunz, “An Excitonic Mechanism of Detonation Initiation in Explosives,” J. Chem. Phys. 112 (7), 3417–3423 (2000).

    Article  ADS  Google Scholar 

  34. G. J. Gilman, “Fast, Faster, and Fastest Cracks,” Phil. Mag. Lett. 77 (2), 79–82 (1998).

    Article  ADS  Google Scholar 

  35. Q. Wu, W. H. Zhu, and H. M. Xiao, “Pressure-Induced Hydrogen Transfer and Polymerization in Crystalline Furoxan,” RSC Adv. 4 (31), 15995–16004 (2014).

    Article  Google Scholar 

  36. Q. Wu, W. H. Zhu, and H. M. Xiao, “Structural Transformations and Absorption Properties of Crystalline 7-amino-6-nitrobenzodifuroxan under High Pressures,” J. Phys. Chem. C 117 (33), 16830–16839 (2013).

    Article  Google Scholar 

  37. W. Zhu and H. Xiao, “First-Principles Band Gap Criterion for Impact Sensitivity of Energetic Crystals: A Review,” Struct. Chem. 21 (3), 657–665 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ma.

Additional information

Original Russian Text © P. Ma, J.-Ch. Jiang, Sh.-G. Zhu.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 3, pp. 82–92, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Jiang, JC. & Zhu, SG. Synthesis, XRD and DFT studies of a novel cocrystal energetic perchlorate amine salt: Methylamine triethylenediamine triperchlorate. Combust Explos Shock Waves 53, 319–328 (2017). https://doi.org/10.1134/S0010508217030091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217030091

Keywords

Navigation