Skip to main content
Log in

Specific features of the transformation of spall cracks to localized shear bands

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Investigations of specific features of the microstructure of the region where a spall crack transforms to an adiabatic shear band are based on a spall model of strain localization, which implies that adiabatic shear bands are induced by interference of unloading waves, and the value of the negative stress in the expansion region of these waves does not exceed the dynamic strength of the material. It is shown that the transformation region contains a tremendous number of dislocation ensembles, which is much greater than the number of dislocation ensembles generated by a shock wave. Detection of micrometer-sized fracture sites in the region of interference of unloading waves implies that small fracture sites are formed in a polycrystalline material on dislocations arising in the course of dynamic tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. L. Woodward, “The Penetration of Metal Targets which Fail by Adiabatic Shear Plugging,” Int. J. Mech. Sci. 20, 599–607 (1978).

    Article  Google Scholar 

  2. T. W. Wright, The Physics and Mathematics of Adiabatic Shear Bands (University Press, Cambridge, 2002).

    MATH  Google Scholar 

  3. M. N. Raftenberg, “A Shear Banding Model for Penetration Calculation,” Report No. ARL-TR-2221 (U. S. Army Research Laboratory, 2000).

    Google Scholar 

  4. T. A. C. Stock and K. R. L. Thomson, “Penetration of Aluminum Alloys by Projectiles,” Metallurg. Trans. 1, 219–224 (1970).

    ADS  Google Scholar 

  5. M. Hammerschmidt and H. Kreye, “The Role of Adiabatic Shearing in Explosive Welding,” in Shock Wave and High Strain Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981), pp. 187–197.

    Google Scholar 

  6. G. L. Moss, “Shear Strains, Strain Rates and Temperature Changes in Adiabatic Shear Bands,” in Shock Wave and High Strain Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981), pp. 30–40.

    Google Scholar 

  7. H. C. Rogers and C. V. Shastry, “Structural Changes in Steels at Adiabatic Shear,” in Shock Wave and High Strain Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981), pp. 301–309.

    Google Scholar 

  8. S. P. Timothy and I. M. Hutchings, “The Structure of Adiabatic Shear Bands in a Titanium Alloy,” Acta Metallurg. 33, 667–676 (1985).

    Article  Google Scholar 

  9. D. E. Grady and J. R. Asay, “Calculation of Thermal Trapping in Shock Deformation of Aluminum,” J. Appl. Phys. 53 (11), 7350–7354 (1982).

    Article  ADS  Google Scholar 

  10. M. A. Meyers, Yb. Xu, Q. Xue, et al., “Microstructural Evolution in Adiabatic Shear Localization in Stainless Steel,” Acta Materialia 51, 1207–1325 (2003).

    Google Scholar 

  11. A. F. Belikova, S. N. Buravova, and Yu. A. Gordopolov, “Strain Localization and its Relationship with the Strain State of the Material,” Zh. Tekh. Fiz. 58 (2), 153–156 (2013).

    Google Scholar 

  12. A. F. Belikova, S. N. Buravova, and E. V. Petrov, “Strain Localization under Dynamic Loading,” Zh. Tekh. Fiz. 58 (8), 68–75 (2013).

    Google Scholar 

  13. H. A. Grebe, H.-R. Pak, and M. A. Meyers, “Adiabatic Shear Localization in Titanium and Ti-Alloy,” Metallurg. Trans. A 16, 761–775 (1985).

    Article  ADS  Google Scholar 

  14. C. L.Wittman, M. A. Meyers, and H.-R. Pak, “Observation of an Adiabatic Shear Band in AlSi 4340 Steel by High-Voltage Transmission Electron Microscopy,” Metallurg. Trans. A 21, 707–716 (1990).

    Article  ADS  Google Scholar 

  15. D. Rittel and S. Osovski, “Dynamic Failure by Adiabatic Shear Banding,” Int. J. Fracture, No. 162, 177–185 (2010).

    Article  MATH  Google Scholar 

  16. G. I. Kanel, S. I. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].

    Google Scholar 

  17. S. A. Atroshenko and D. M. Olenin, “Local Shear Rate in the Spall Region,” Fiz. Met. Metalloved. 87 (2), 90–96 (1999).

    Google Scholar 

  18. A. V. Dobromyslov, N. I. Taluts, E. A. Kozlov, et al., “Specific Features of High-Rate Plastic Straining of Polycrystalline Copper Loaded by Spherically Converging Shock Waves of Different Intensities,” in Abstracts of the XVth Khariton’s Topical Scientific Readings (Sarov, 2013), p. 195.

    Google Scholar 

  19. M. A. Mogilevskii, V. V. Bulgakov, and A. D. Kormachev, “Deformation of Armco Iron and Copper at Strain Rates of 104–105 s-1,” Fiz. Goreniya Vzryva 30 (3), 96–100 (1994) [Combust., Expl., Shock Waves 30 (3), 350–353 (1994)].

    Google Scholar 

  20. U. Andrade, M. A. Meyers, K. S. Vecchio, and A. H. Chokshi, “Dynamic Recrystallization in High-Strain, High-Strain-Rate Plastic Deformation of Copper,” Acta Metallurg. Mater. 42 (9), 3183–3195 (1994).

    Article  Google Scholar 

  21. O. N. Ignatova, I. I. Kaganova, A. N. Malyshev, et al., “Effect of Shock-Wave Loading on the Internal Microstructure and Mechanical Properties of Fine-Grained Copper,” Fiz. Goreniya Vzryva 46 (6), 119–124 (2010) [Combust., Expl., Shock Waves 46 (6), 719–723 (2010)].

    Google Scholar 

  22. S. V. Razorenov and G. I. Kanel, “Strength of Copper Single Crystals and Determining Factors of Fracture of Metals under Uniaxial Dynamic Tension,” Fiz. Met. Metallogr., No. 11, 141–147 (1992).

    Google Scholar 

  23. V. I. Betekhtin and A. G. Kadomtsev, “Evolution of Microscopic Cracks and Pores in Loaded Solids,” Fiz. Tverd. Tela 47 (5), 801–807 (2005).

    Google Scholar 

  24. V. F. Nesterenko and M. P. Bondar’, “Localization of Deformation in Collapse of a Thick Walled Cylinder,” Fiz. Goreniya Vzryva 30 (4), 99–111 (1994) [Combust., Expl., Shock Waves 30 (4), 500–509 (1994)].

    Google Scholar 

  25. M. A. Meyers and L. E. Murr, “The Formation of Defects in the Shock Wave Deformation,” in Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981).

    Chapter  Google Scholar 

  26. V. A. Ogorodnikov, A. A. Sadovoi, V. N. Sofronov, et al., “Kinetic Model of Plastic Fracture with Allowance for Dissipative Processes,” Khim. Fiz. 21 (9), 104–109 (2002).

    Google Scholar 

  27. N.-Y. Tang, P. Niessen, R. J. Pick, and M. J. Worswick, “An Investigation of Shock-Induced Damage in Oxygen-Free High Conductivity Copper,” Mater. Sci. Eng. A 131, 153–161 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Buravova.

Additional information

Original Russian Text © S.N. Buravova, E.V. Petrov, A.S. Shchukin.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 5, pp. 131–140, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buravova, S.N., Petrov, E.V. & Shchukin, A.S. Specific features of the transformation of spall cracks to localized shear bands. Combust Explos Shock Waves 52, 613–620 (2016). https://doi.org/10.1134/S0010508216050129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216050129

Keywords

Navigation