Skip to main content
Log in

Transformation of the thermal regimes of exothermic reactions in the case of harmonic perturbations of the velocity and temperature of reagents at the entrance of the adiabatic reactor

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The physical concepts and the results of the thermal theory of combustion are used as a basis for the qualitative analysis and mathematical simulation of transformation of stationary temperature distributions along the length of an adiabatic reactor in the case of periodic perturbations of the velocity of the reagent in the reactor and its temperature at the entrance of the reactor. It is established that, with certain values of the amplitude and frequency of harmonic perturbations of the velocity of the reagent, it is possible to improve the thermal stability of the process (increase the pre-explosion heating).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. A. Ivanov, V. S. Beskov, and M. G. Slin’ko, “The Number of Stationary Solutions and Stability of the Adiabatic Process in a Flow with Longitudinal Mixing,” Teor. Osn. Khim. Tekh. 1 (4), 488–493 (1967).

    Google Scholar 

  2. V. Hlavacek and H. Hofmann, “Modelling of Chemical Reactors—XVI. Steady State Axial Heat and Mass Transfer in Tubular Reactors. An Analysis of the Uniqueness of Solutions,” Chem. Eng. Sci. 25 (1), 173–185 (1970).

    Article  Google Scholar 

  3. V. Hlavacek and H. Hofmann, “Modelling of Chemical Reactors—XVII. Steady State Axial Heat and Mass Transfer in Tubular Reactors. Numerical Investigation of Multiplicity,” Chem. Eng. Sci. 25 (1), 187–199 (1970).

    Article  Google Scholar 

  4. V. V. Kafarov, A. E. Sofiev, and A. M. Trakhtenberg, “Stabilization of Unstable Regimes in Nonlinear Chemical Engineering Systems Using Parametric Oscillations,” Dokl. Akad. Nauk SSSR 268 (1), 137–142 (1983).

    MathSciNet  Google Scholar 

  5. F. J. M. Horn, “Periodic Countercurrent Processes,” Ind. Eng. Chem., Proc. Des. Devel. 6 (1), 30–35 (1967).

    Article  Google Scholar 

  6. N. I. Gel’perin, P. S. Nazarov, and M. A. Fandeev, “Investigation of Liquid Extraction with Controlled Cycles,” Khim. Neft. Mashinostroenie, No. 4, 16–19 (1971).

    Google Scholar 

  7. R. N. Turnock and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption,” AIChE J. 17 (2), 335–342 (1971).

    Article  Google Scholar 

  8. J. E. Bailey, “Periodic Operation of Chemical Reactors: A Review,” Chem. Eng. Commun. 1 (3), 111–124 (1973).

    Article  Google Scholar 

  9. J. P. Briggs, R. R. Hudgins, and P. L. Silveston, “Composition Cycling of an SO2 Oxidation Reactor,” Chem. Eng. Sci. 32 (9), 1087–1092 (1977).

    Article  Google Scholar 

  10. K. Schaedlich, U. Hoffmann, and H. Hofmann, “Periodical Operation of Chemical Processes and Evaluation of Conversion Improvements,” Chem. Eng. Sci. 38 (9), 1375–1384 (1983).

    Article  Google Scholar 

  11. M. Berezowski, “Bifurcation Analysis of the Conversion Degree in Systems Based on the Cascade of Tank Reactors,” Chem. Eng. Sci. 66 (21), 5219–5223 (2011).

    Article  Google Scholar 

  12. S. I. Reshetnikov, E. A. Ivanov, L. Kiwi-Minsker, and A. Renken, “Performance Enhancement by Unsteady-State Reactor Operation: Theoretical Analysis for Two-Sites Kinetic Model,” Chem. Eng. Technol. 26 (7), 751–758 (2003).

    Article  Google Scholar 

  13. S. I. Reshetnikov, E. A. Ivanov, and A. N. Startsev, “Benzene Hydrogenation in the Thiophene Presence over the Sulfide Ni–Mo/Al2O3 Catalyst Under Periodic Operation: Kinetics and Process Modelling,” Chem. Eng. J. 134, 100–105 (2007).

    Article  Google Scholar 

  14. Yu. Sh. Matros, Nonstationary Processes in Catalytic Reactors (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  15. Yu. Sh. Matros, Catalytic Processes in Nonstationary Conditions (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  16. V. P. Zhdanov, “Periodic Perturbation of Kinetics of Heterogeneous Catalytic Reactions,” Surf. Sci. Rep. 55, 1–48 (2004).

    Article  ADS  Google Scholar 

  17. T. P. Ivleva and K. G. Shkadinskii, “Algorithm for Constructing Computational Grids Irregularly Adapting to Solutions,” Inform. Byul. Gosfonda Algoritmov Programm SSSR, No. 1, 18–19 (1979).

    Google Scholar 

  18. A. G. Merzhanov and V. G. Abramov, “Thermal Explosion of Explosives and Propellants. A Review,” Propell. Explos. 6, 130–148 (1981).

    Article  Google Scholar 

  19. A. A. Butakov, E. I. Maksimov, and K. G. Shkadinskii, “Theory of Chemical Displacement Reactors,” Fiz. Goreniya Vzryva 14 (1), 62–69 (1978) [Combust., Expl., Shock Waves 14 (1), 48–54 (1978)].

    Google Scholar 

  20. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Nauka, Moscow, 1987; Plenum, New York, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Kostin.

Additional information

Original Russian Text © A.A. Butakov, E.N. Shatunova, A.Yu. Kostin.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 5, pp. 55–61, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butakov, A.A., Shatunova, E.N. & Kostin, A.Y. Transformation of the thermal regimes of exothermic reactions in the case of harmonic perturbations of the velocity and temperature of reagents at the entrance of the adiabatic reactor. Combust Explos Shock Waves 52, 544–549 (2016). https://doi.org/10.1134/S0010508216050051

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216050051

Keywords

Navigation