Skip to main content
Log in

Cancer incidence and mortality after low-dosage radiation exposure: Epidemiological aspects

  • Radiobiology and Radioecology
  • Published:
Biophysics Aims and scope Submit manuscript

Abstracts

Current recommendations for limiting exposure to ionizing radiation are based on the linear no-threshold (LNT) model for radiation carcinogenesis under which every dose, no matter how low, bears some cancer risk. In this review, epidemiological evidence is discussed that the LNT hypothesis is incorrect at low doses. A large set of data was accumulated that show that cancer risk after ordinarily encountered radiation exposure (natural background radiation, medical X-rays, etc.) is much lower than estimates based on the LNT model. The discovery of low-level radiation hormesis (stimulating effect) implies a non-linear dose-response curve in the low-dosage region. Further studies in this field will provide new insights into the mechanisms of radiation carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. B. Burlakova, A. N. Goloshchapov, N. V. Gorbunova, et al., Radiats. Biologiya. Radioekologiya 36(4) 610 (1996).

    Google Scholar 

  2. E. B. Burlakova, A. N. Goloshchapov, G. P. Zhizhina, and A.A. Konradov, Radiats. Biologiya. Radioekologiya 39(1) 26 (1999).

    Google Scholar 

  3. I. I. Pelevina, V. Ya. Gotlib, and O. V. Kudryashova, Radiats. Biol. Radioekologiya 36(4) 546 (1996).

    Google Scholar 

  4. Yu. E. Dubrova, M. Plumb, B. Gutierrez, et al., Nature 405, 37 (2000).

    ADS  Google Scholar 

  5. V. K. Mazurik and V. F. Mikhailov, Radiats. Biol. Radioekologiya 41(3) 272 (2001).

    Google Scholar 

  6. R. Barber, M. A. Plumb, E. Boulton, et al., Proc. Natl. Acad. Sci. USA 99, 6877 (2002).

    ADS  Google Scholar 

  7. C. Barber, P. Hickenbotham, T. Hatch, and D. Kelly, Oncogene 25, 7336 (2006).

    Google Scholar 

  8. Yu. E. Dubrova, Radiats. Biologiya. Radioekologiya 46(5) 537 (2006).

    Google Scholar 

  9. A. V. Akleev, A. V. Aleshchenko, V. Ya. Gotlib, et al., Radiats. Biologiya. Radioekologiya 47(5) 550 (2007).

    Google Scholar 

  10. I. I. Suskov, N. S. Kuz’mina, V. S. Suskova, et al., Radiats. Biol. Radioekologiya 48(3) 278 (2008).

    Google Scholar 

  11. S. I. Zaichkina, O. M. Rozanova, A. Kh. Akhmadieva, et al., Radiats. Biol. Radioekologiya 49(1) 55 (2009).

    Google Scholar 

  12. G. R. Hoffmann, Cancer Caused by Low-Dose Irradiation: An Independent Analysis of the Problem. Eds. E. B. Burlakova and V. N. Lystsov (Sotsialno-ekologicheskii soyuz, Moscow, 1994) [in Russian].

    Google Scholar 

  13. E. B. Burlakova, A. N. Goloshchapov, S. M. Gurevich, et al., Eur. J. Oncol. 3(4) 367 (1998).

    Google Scholar 

  14. E. B. Burlakova, V. N. Erokhin, and V. A. Semenov, Radiats. Biologiya. Radioekologiya 46(5) 527 (2006).

    Google Scholar 

  15. A. M. Kuzin, Stimulating Action of Ionizing Irradiation on Biological Processes (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  16. A. M. Kuzin, Ideas of Radiation Hormesis in the Nuclear Age (Nauka, Moscow, 1995) [in Russian].

    Google Scholar 

  17. Yu. A. Ivanovskii, Vestn. DVO RAN 6, 86 (2006).

    Google Scholar 

  18. E. J. Calabrese, Toxicol. Appl. Pharmacol. 197, 125 (2004).

    Google Scholar 

  19. E. J. Calabrese, Int. J. Toxicol. 27, 369 (2008).

    Google Scholar 

  20. E. J. Calabrese, Arch. Toxicol. 83, 227 (2009).

    Google Scholar 

  21. E. J. Calabrese, Arch. Toxicol. 83, 203 (2009).

    Google Scholar 

  22. A. M. Kuzin, The Structural-Metabolic Hypothesis in Radiobiology (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  23. A. M. Kuzin, Natural Radiation Background and Its Significance for the Earth’s Biosphere (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  24. A. N. Kovalenko and V. V. Kovalenko, Systemic Radiation Syndroms (NGGU Press, Nikolaev, 2008) [in Russian].

    Google Scholar 

  25. I. B. Kerim-Markus, Radiat. Biologiya. Radioekologiya 38(5) 673 (1998).

    Google Scholar 

  26. I. I. Gusarov and A. V. Dubovskoi, Med. Radiol. i Radiats. Bezopasn. 2, 18 (1999).

    Google Scholar 

  27. L. M. Rozhdestvenskii, Radiats. Biol. Radioekologiya 39(1) 127 (1999).

    MathSciNet  Google Scholar 

  28. L. M. Rozhdestvenskii, Radiats. Biol. Radioekologiya 48(4) 389 (2008).

    Google Scholar 

  29. I. Ya. Vasilenko and O. I. Vasilenko, Bul. po atomnoi energii 12, 34 (2001).

    Google Scholar 

  30. I. I. Gusarov, Apparatura i novosti radiats. izmer. 4, 8 (2001).

    Google Scholar 

  31. V. G. Petin, I. I. Morozov, N. M. Kabakova, and T. A. Gorshkova, Radiats. Biol. Radioekologiya 43(2) 176 (2003).

    Google Scholar 

  32. A. M. Vaiserman, A. Ya. Litoshenko, T. Yu. Kvitnitskaya-Ryzhova, et al., Citologiya i Genetika 37(3) 41 (2003).

    Google Scholar 

  33. A. A. Moskalev, Radiat. Biol. Radioekologiya 48(2) 139 (2008).

    Google Scholar 

  34. M. V. Shaposhnikov, E. V. Turysheva, and A. A. Moskalev, Radiat. Biol. Radioekologiya 49(1) 46 (2009).

    Google Scholar 

  35. J. L. Prekeges, J. Nucl. Med. Technol. 31, 11 (2003).

    Google Scholar 

  36. R. M. Macklis, J. Am. Med. Ass. 264, 614 (1990).

    Google Scholar 

  37. S. Wolff, Radiat. Res. 131, 117 (1992).

    Google Scholar 

  38. H. J. Muller, Science 116, 84 (1927).

    ADS  Google Scholar 

  39. Z. Jaworowski, 21st Century Sci. Technol. 10(1) 4 (1997).

    Google Scholar 

  40. P. A. Karam and S. A. Leslie, Health Physics 77, 662 (1999).

    Google Scholar 

  41. I. G. Draganić, D. D. Draganić, and J. P. Adloff, Radiation and Radioactivity on Earth and Beyond (CRC Press, Boca Raton, 1990).

    Google Scholar 

  42. Z. Jaworowski, Int. J. Low Radiat. 5, 151 (2008).

    Google Scholar 

  43. B. R. Scott, S. A. Belinsky, and S. Leng, Dose Response 7, 104 (2009).

    Google Scholar 

  44. R. E. J. Mitchell, Dose Response 5, 284 (2007).

    Google Scholar 

  45. M. Tubiana, A. Aurengo, D. Averbeck, and R. Masse, Radiat. Environ. Biophys. 44, 245 (2006).

    Google Scholar 

  46. M. Tubiana, L. E. Feinendegen, Ch. Yang, and J. M. Kaminski, Radiology 251, 13 (2009).

    Google Scholar 

  47. M. Pollycove and L. E. Feinendegen, Hum. Exp. Toxicol. 27, 169 (2008).

    Google Scholar 

  48. B. R. Scott, Dose Response 5, 131 (2007).

    Google Scholar 

  49. B. R. Scott, Dose Response 6, 333 (2008).

    Google Scholar 

  50. T. D. Luckey, Int. J. Low Radiat. 5, 71 (2008).

    Google Scholar 

  51. B. L. Cohen, Int. Arch. Occup. Environ. Health 66, 71 (1994).

    Google Scholar 

  52. S. A. Krueger, M. C. Joiner, M. Weinfeld, et al., Radiat. Res. 167(3) 260 (2007).

    Google Scholar 

  53. T. D. Luckey, RSO Magazine 8, 19 (2003).

    Google Scholar 

  54. H. Schollnberger, R. D. Stewart, R. Michel, and W. Hoffmann, Nonlin. Biol. Toxicol. Med. 2, 317 (2004).

    Google Scholar 

  55. L. E. Feinendegen, Br. J. Radiol. 78, 3 (2005).

    Google Scholar 

  56. B. R. Scott and J. Di Palma, Dose Response 5, 230 (2007).

    Google Scholar 

  57. L. E. Feinendegen, M. Pollycove, and R. D. Neumann, Experim. Hematol. 35, 37 (2007).

    Google Scholar 

  58. S. Liu, Dose Response 5, 39 (2007).

    Google Scholar 

  59. B. R. Scott, M. Haque, and J. Di Palma, Int. J. Low Radiat. 4, 1 (2007).

    Google Scholar 

  60. M. Tubiana, Int. J. Low Radiat. 5, 173 (2008).

    Google Scholar 

  61. J. L. Redpath, Nonlin. Biol. Tox. Med. 3, 113 (2005).

    Google Scholar 

  62. K. Sakai, Y. Hoshi, T. Nomura, et al., Int. J. Low Radiat. 1, 142 (2003).

    Google Scholar 

  63. B. F. Wall, G. M. Kendall, A. A. Edwards, et al., Br. J. Radiol. 79, 285 (2006).

    Google Scholar 

  64. E. J. Hall and A. J. Giaccia, Radiobiology for the Radiologist, 6th ed. (Lippincott Williams & Wilkins, Philadelphia, 2006).

    Google Scholar 

  65. UN Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Effects of Ionizing Radiation, V. 2, Annex G. Biological Effects at Low Radiation Doses (UN, New York, 2000).

    Google Scholar 

  66. National Radiological Protection Board (NRPB), Doc. NRPB 6(1) 1 (1995).

    Google Scholar 

  67. National Council on Radiation Protection and Measurements (NCRP) Report 136 in Evaluation of the Linear-Nonthreshold Dose-Response Model for Ionizing Radiation (NCRP, Bethesda, 2001).

    Google Scholar 

  68. Expert Group on the Implications of Radiological Protection Sciences (EGIS): Scientific Issues and Emerging Challenges for Radiological Protection. NEA Rep. No. 6167 (NEA OECD, 2007).

  69. S. Yoshinaga, K. Mabuchi, and A. J. Sigurdson, Radiology 233, 313 (2004).

    Google Scholar 

  70. G. M. Matanoski, A. Sternberg, and E. A. Elliott, Health Phys. 52, 637 (1987).

    Google Scholar 

  71. A. Berrington, S. C. Darby, H. A. Weiss, and R. Doll, Br. J. Radiol. 74, 507 (2001).

    Google Scholar 

  72. J. R. Cameron, Br. J. Radiol. 75, 637 (2002).

    Google Scholar 

  73. R. Doll, A. Berrington, and S. C. Darby, Br. J. Radiol. 78, 1057 (2005).

    Google Scholar 

  74. D. J. Brenner and E. J. Hall, N. Engl. J. Med. 357, 2277 (2007).

    Google Scholar 

  75. A. B. Miller, G. R. Howe, and G. J. Sherman, N. Eng. J. Med. 321, 1285 (1989).

    Google Scholar 

  76. J. D. Boice, M. M. Morin, and A. G. Glass, J. Am. Med. Ass. 265, 1290 (1991).

    Google Scholar 

  77. M. Moory Doody, J. E. Lonstein, and M. Stovall, Spine 25, 2052 (2000).

    Google Scholar 

  78. E. Ron, Health Phys. 85, 47 (2003).

    Google Scholar 

  79. M. Tubiana, S. Nagataki, and L. E. Feinendegen, N. Engl. J. Med. 358, 850 (2008).

    Google Scholar 

  80. R. A. Kleinerman, Pediatr. Radiol. 36, 121 (2006).

    Google Scholar 

  81. B. R. Scott. C. L. Sanders, R. E. Mitchel, and D. R. Boreham, J. Am. Phys. Surg. 13, 9 (2008).

    Google Scholar 

  82. G. Bauer, Int. J. Radiat. Biol. 83(11–12) 873 (2007).

    Google Scholar 

  83. M. Löbrich and J. Kiefer, Int. J. Cancer 118, 2652 (2006).

    Google Scholar 

  84. C. Rubino, E. Adjadj, and F. Doyon, Int. J. Radiat. Oncol. Biol. Phys. 62, 1084 (2005).

    Google Scholar 

  85. J. A. Franklyn, L. Maisonneuve, M. Sheppard, et al., Lancet 353, 2111 (1999).

    Google Scholar 

  86. C. Rubino, F. de Vathaire, A. Shamsaldin, and M. G. Le, Br. J. Cancer 89, 840 (2003).

    Google Scholar 

  87. K. Moon, G. J. Stukenborg, S. Hein, and D. Theodorescu, Cancer 107, 991 (2006).

    Google Scholar 

  88. H. Suit, S. Goldberg, and A. Niemierko, Radiat. Res. 167, 12 (2007).

    Google Scholar 

  89. R. Wakeford, J. Radiol. Prot. 29, 61 (2009).

    Google Scholar 

  90. P. Jacob, W. Rühm, L. Walsh, et al., Occup. Environ. Med. 66, 789 (2009).

    Google Scholar 

  91. E. Cardis, M. Vrijheid, M. Blettner, et al., Brit. Med. Journal 331, 77 (2005).

    Google Scholar 

  92. E. Cardis, M. Vrijheid, and M. Blettner, Radiat. Res. 167, 396 (2007).

    Google Scholar 

  93. M. Vrijheid, E. Cardis, and M. Blettner, Radiat. Res. 167, 361 (2007).

    Google Scholar 

  94. E. Cardis, E. S. Gilbert, and L. Carpenter, Radiat. Res. 142, 117 (1995).

    Google Scholar 

  95. M. Vrijheid, E. Cardis, and P. Ashmore, et al., Radiat. Res. 170(5) 661 (2008).

    Google Scholar 

  96. S. Raman, C. S. Dulberg, R. A. Spasoff, and T. Scott, Can. Med. Assoc. J. 136, 1051 (1987).

    Google Scholar 

  97. S. C. Darby, G. M. Kendall, T. P. Fell, et al., Brit. Med. Journal 307, 1530 (1993).

    Google Scholar 

  98. L. B. Zablotska, J. P. Ashmore, and G. R. Jowe, Radiat. Res. 161, 633 (2004).

    Google Scholar 

  99. J. D. Abbatt, T. R. Hamilton, and J. L. Weeks, Biological Effects of Low-Level Radiation IAEA Symposium Proceedings, 1983 (IAEA, Vienna 1983) p. 351.

    Google Scholar 

  100. G. M. Kendall, C. R. Muirhead, B. H. MacGibbon, et al., Brit. Med. J. 304, 220 (1992).

    Google Scholar 

  101. V. A. Kostyuchenko and L. Krestina, Sci. Total Environ. 142, 119 (1994).

    Google Scholar 

  102. E. Cardis, G. Howe, and E. Ron, J. Radiol. Prot. 26, 127 (2006).

    Google Scholar 

  103. UN Chernobyl Forum, Health Effects of the Chernobyl Accident and Special Health Care Programmes (OMS, Genèva, 2006).

    Google Scholar 

  104. V. K. Ivanov and A. F. Tsyb, Medical Radiological Consequences of Chernobyl for the Russian Population: Radiation Risks’ Estimate (Meditsina, Moscow, 2002) [in Russian].

    Google Scholar 

  105. V. K. Ivanov, A. F. Tsyb, A. I. Gorskii, et al., Radiats. Biologiya. Radioekologiya 46(2) 159 (2006).

    Google Scholar 

  106. V. K. Ivanov, A. I. Gorskii, A. F. Tsyb, et al., Radiat. Environ. Biophys. 43, 35 (2004).

    Google Scholar 

  107. V. K. Ivanov, A. I. Gorskii, V. V. Kashcheev, et al., Radiat. Environ. Biophys. 8(3) 247 (2009).

    Google Scholar 

  108. V. K. Ivanov, Health Physics 93, 470 (2007).

    Google Scholar 

  109. Biological Effects of Ionizing Radiation (BEIR) VI Report, in: The Health Effects of Exposure to Indoor Radon (Nat. Acad. Sci. USA, Washington, 1998).

    Google Scholar 

  110. K. Becker, Nonlinearity Biol. Toxicol. Med. 1(1) 3 (2003).

    Google Scholar 

  111. S. C. Darby and D. C. Hill, Radiat. Prot. Dosim. 104, 321 (2003).

    Google Scholar 

  112. J. H. Hendry, S. L. Simon, A. Wojcik, et al., J. Radiol. Prot. 29, 29 (2009).

    Google Scholar 

  113. High Background Radiation Research Group, Science 209, 877 (1980).

    Google Scholar 

  114. L. X. Wei, Y. R. Zha, and Z. F. Tao, Radiat. Res. 31, 119 (1990).

    Google Scholar 

  115. K. S. V. Nambi and S. D. Soman, Health Phys. 52, 653 (1987).

    Google Scholar 

  116. A. L. Brooks, Int. J. Radiat. Biol. 75(12) 1481 (1999).

    Google Scholar 

  117. A. L. Brooks, X. C. Lei, and K. N. Rithidech, Adv. Space Res. 31(6) 1505 (2003).

    ADS  Google Scholar 

  118. Z. Tao, Y. Zha, and S. Akiba, J. Radiat. Res. 41, 31 (2000).

    Google Scholar 

  119. R. R. Nair, B. Rajan, S. Akiba, et al., Health Phys. 96, 55 (2009).

    Google Scholar 

  120. B. L. Cohen, Health Phys. 65, 529 (1993).

    Google Scholar 

  121. B. L. Cohen, Health Phys. 67, 157 (1995).

    Google Scholar 

  122. J. Jagger, Health Phys. 75, 428 (1998).

    Google Scholar 

  123. N. A. Frigerio and R. S. Stove, in Biological and Environmental Effects of Low-Level Radiation. IAEA Symposium Proceedings 1976, V. 2 (IAEA, Vienna, 1976) p. 385.

    Google Scholar 

  124. M. Mifune, T. Sobue, H. Arimoto, et al., Jpn. J. Cancer Res. 83, 1 (1992).

    Google Scholar 

  125. S. Kondo, Health Effects of Low-Level Radiation (Kinki Univ., Osaka, 1993).

    Google Scholar 

  126. J. R. Cameron, Br. J. Radiol. 78, 11 (2005).

    Google Scholar 

  127. T. D. Luckey, Dose Response 6, 369 (2008).

    Google Scholar 

  128. D. A. Pierce, Y. Shimizu, D. L. Preston, et al., Radiat, Res. 146, 1 (1996).

    Google Scholar 

  129. D. A. Pierce and D. L. Preston, Radiat. Res. 154, 178 (2000).

    Google Scholar 

  130. M. P. Little, J. Radiol. Prot. 29, 43 (2009).

    Google Scholar 

  131. D. L. Preston, D. A. Pierce, Y. Shimizu, et al., Radiat. Res. 162, 377 (2004).

    Google Scholar 

  132. M. P. Little and C. R. Muirhead, Int. J. Radiat. Biol. 76, 939 (2000).

    Google Scholar 

  133. W. F. Heidenreich, H. G. Paretzke, and P. Jacob, Radiat. Environ. Biophys. 36, 205 (1997).

    Google Scholar 

  134. UN Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), Sources and Effects of Ionizing Radiation, Report to the General Assembly with Scientific Annexes (UN, New York, 1994).

    Google Scholar 

  135. T. Koana, M.O. Okada, K. Ogura, et al., Radiat. Res. 167(2) 217 (2007).

    Google Scholar 

  136. K. Ogura, J. Magae, Y. Kawakami, and T. Koana, Radiat. Res. 171(1) 1 (2009).

    Google Scholar 

  137. A. M. Lyaginskaya, A. R. Tukov, V. A. Osipov, and O. N. Prokhorova, Radiats. Biol. Radioekologiya 47(2) 188 (2007).

    Google Scholar 

  138. I. I. Suskov, N. S. Kuz’mina, V. S. Suskova, et al., Radiats. Biol. Radioekologiya 46(2) 167 (2006).

    Google Scholar 

  139. I. E. Vorobtsova and A. V. Semenov, Radiats. Biol. Radioekologiya 46(2) 140 (2006).

    Google Scholar 

  140. J. V. Neel, W.J. Schull, A. A. Awa, et al., Am. J. Hum. Genet. 46(6) 1053 (1990).

    Google Scholar 

  141. J. M. Cuttler and M. Pollycove, Dose Response 7, 52 (2009).

    Google Scholar 

  142. C. R. Aleta, Appl. Radiat. Isot. 67, 1290 (2009).

    Google Scholar 

  143. G. R. Hoffmann, Dose Response 7, 1 (2009).

    Google Scholar 

  144. M. P. Little, R. Wakeford, E. J. Tawn, et al., Radiology 251(1) 6 (2009).

    Google Scholar 

  145. D. J. Brenner, R. Doll, D. T. Goodhead, et al., Proc. Natl. Acad. Sci. USA 100, 13761 (2003).

    ADS  Google Scholar 

  146. S. C. Darby. D. C. Hill, A. Auvinen, et al., Brit. Med. J. 330, 223 (2005).

    Google Scholar 

  147. J. Breckow, Radiat. Environ. Biophys. 44, 257 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vaiserman.

Additional information

Original Russian Text © A.M. Vaiserman, L.V. Mekhova, N.M. Koshel, V.P. Voitenko, 2010, published in Radiatsionnaya Biologiya. Radioekologiya, 2010, Vol. 50, No. 6, pp. 691–702.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaiserman, A.M., Mekhova, L.V., Koshel, N.M. et al. Cancer incidence and mortality after low-dosage radiation exposure: Epidemiological aspects. BIOPHYSICS 56, 371–380 (2011). https://doi.org/10.1134/S000635091102031X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091102031X

Keywords

Navigation