Skip to main content
Log in

The Expression of Matryoshka Gene Encoding a Homologue of Kunitz Peptidase Inhibitor Is Regulated Both at the Level of Transcription and Translation

  • Short Communications
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The gene for Kunitz peptidase inhibitor-like protein (KPILP) contains nested alternative open reading frame (aORF) that controls expression of the maternal mRNA. The content of NbKPILP mRNA in intact leaves of Nicotiana benthamiana plant is low but increases significantly upon extended dark exposure or when foreign nucleic acid is overexpressed in the cells. The NbKPILP gene promoter along with the expressed nested aORF are likely to play an important role in maintaining the levels of NbKPILP mRNA. To elucidate the role of NbKPILP promoter, we isolated a fragment of N. benthamiana chromosomal DNA upstream of the NbKPILP transcription start, sequenced it, and created constructs in which reporter E. coli uidA gene coding for β-D-glucuronidase (GUS) was placed under control of the NbKPILP promoter. By assessing the efficacy of uidA mRNA synthesis directed by the NbKPILP promoter and 35S promoter of the cauliflower mosaic virus in a transient expression system, we showed that the levels of GUS accumulation were comparable for both promoters. Prolonged incubation of the agroinjected plants in the darkness stimulated accumulation of the uidA mRNA directed by the NbKPILP promoter. Our experiments indicate that along with regulation at the transcriptional level, expression of NbKPILP mRNA can be affected by expression of the nested aORF controlled by the polypurine block (PPB) located upstream of its start codon, since introduction of mutations in the PPB resulted in significant accumulation of the NbKPILP mRNA. Nucleotide replacement in the aORF start codon led to the drastic increase in the amounts of NbKPILP mRNA and its protein product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abbreviations

aORF:

nested alternative reading frame

GUS:

β-D-glucuronidase

KPI:

Kunitz peptidase inhibitor

(Nb)KPILP:

(Nicotiana benthamiana) Kunitz peptidase inhibitor-like protein

PPB:

polypurine block

proNbKPILP :

NbKPILP promoter

RT-qPCR:

quantitative reverse transcription polymerase chain reaction

35S:

cauliflower mosaic virus (CaMV) 35S RNA promoter

(s)ORF:

(short) ORF

sPEP:

peptide encoded by sORF

3′-UTR:

3′-untranslated region

References

  1. Neto, J. R. C. F., da Silva, M. D., Pandolfi, V., Crovella, S., Benko-Iseppon, A. M., and Kido, E. A. (2016) Epigenetic signals on plant adaptation: a biotic stress perspective, Curr. Protein Pept. Sci., 8, 352–367.

    Google Scholar 

  2. Ribrioux, S., Brungger, A., Baumgarten, B., Seuwen, K., and John, M. R. (2008) Bioinformatics prediction of overlapping frameshifted translation products in mammalian transcripts, BMC Genomics, 9, 122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Andrews, S. J., and Rothnagel, J. A. (2014) Emerging evidence for functional peptides encoded by short open reading frames, Nat. Rev. Genet., 15, 193–204.

    Article  PubMed  CAS  Google Scholar 

  4. Hayden, C. A., and Jorgensen, R. A. (2007) Identification of novel conserved peptide uORF homology groups in Arabidopsis and rice reveals ancient eukaryotic origin of select groups and preferential association with transcription factor-encoding genes, BMC Biol., 5, 32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Tran, M. K., Schultz, C. J., and Baumann, U. (2008) Conserved upstream open reading frames in higher plants, BMC Genomics, 9, 361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Vaughn, J. N., Ellingson, S. R., Mignone, F., and Arnim, A. (2012) Known and novel post-transcriptional regulatory sequences are conserved across plant families, RNA, 18, 368–384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Jorgensen, R. A., and Dorantes-Acosta, A. E. (2012) Conserved peptide upstream open reading frames are associated with regulatory genes in angiosperms, Front. Plant Sci., 3, 191.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. Bailey-Serres, J., and Ma, W. (2017) Plant biology: an immunity boost combats crop disease, Nature, 545, 420–421.

    Article  PubMed  CAS  Google Scholar 

  9. Juntawong, P., Girke, T., Bazin, J., and Bailey-Serres, J. (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis, Proc. Natl. Acad. Sci. USA, 111, 203–212.

    Article  CAS  Google Scholar 

  10. Schepetilnikov, M., and Ryabova, L. A. (2017) Auxin signaling in regulation of plant translation reinitiation, Front. Plant Sci., 8, 1014.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sesma, A., Castresana, C., and Castellano, M. M. (2017) Regulation of translation by TOR, eIF4E and eIF2α in plants: current knowledge, challenges and future perspec-tives, Front. Plant Sci., 8, 644.

    Article  PubMed  Google Scholar 

  12. Tanaka, M., Sotta, N., Yamazumi, Y., Yamashita, Y., Miwa, K., Murota, K., Chiba, Y., Hirai, M. Y., Akiyama, T., Onouchi, H., Naito, S., and Fujiwara, T. (2016) The minimum open reading frame, AUG-stop, induces boron-dependent ribosome stalling and mRNA degradation, Plant Cell, 28, 2830–2849.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Xu, G., Greene, G. H., Yoo, H., Liu, L., Marques, J., Motley, J., and Dong, X. (2017) Global translational reprogramming is a fundamental layer of immune regulation in plants, Nature, 545, 487–490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Xu, G., Yuan, M., Ai, C., Liu, L., Zhuang, E., Karapetyan, S., Wang, S., and Dong, X. (2017) uORF-mediated trans-lation allows engineered plant disease resistance without fitness costs, Nature, 545, 491–494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Dong, X., Wang, D., Liu, P., Li, C., Zhao, Q., Zhu, D., and Yu, J. (2013) Zm908p11, encoded by a short open reading frame (sORF) gene, functions in pollen tube growth as a profilin ligand in maize, J. Exp. Bot., 64, 2359–2372.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hanada, K., Higuchi-Takeuchi, M., Okamoto, M., Yoshizumi, T., Shimizu, M., Nakaminami, K., Nishi, R., Ohashi, C., Iida, K., Tanaka, M., Horii, Y., Kawashima, M., Matsui, K., Toyoda, T., Shinozaki, K., Seki, M., and Matsui, M. (2013) Small open reading frames associated with morphogenesis are hidden in plant genomes, Proc. Natl. Acad. Sci. USA, 110, 2395–2400.

    Article  PubMed  Google Scholar 

  17. Sheshukova, E. V., Komarova, T. V., Ershova, N. M., Shindyapina, A. V., and Dorokhov, Y. L. (2017) An alternative nested reading frame may participate in the stress-dependent expression of a plant gene, Front. Plant Sci., 8, 2137.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Corley, M., Solem, A., Phillips, G., Lackey, L., Ziehr, B., Vincent, H. A., Mustoe, A. M., Ramos, S. B. V., Weeks, K. M., Moorman, N. J., and Laederach, A. (2017) An RNA structure-mediated, posttranscriptional model of human α-1-antitrypsin expression, Proc. Natl. Acad. Sci. USA, 114, 10244–10253.

    Article  CAS  Google Scholar 

  19. Dorokhov, Y. L., Skulachev, M. V., Ivanov, P. A., Zvereva, S. D., Tjulkina, L. G., Merits, A., Gleba, Y. Y., Hohn, T., and Atabekov, J. G. (2002) Polypurine (A)-rich sequences pro-mote cross-kingdom conservation of internal ribosome entry, Proc. Natl. Acad. Sci. USA, 99, 5301–5306.

    Article  PubMed  CAS  Google Scholar 

  20. Maniatis, T., Fritsch, E., and Sambroock, D. (1984) in Methods of Genetic Engineering. Molecular Cloning [Russian translation], Mir, Moscow.

    Google Scholar 

  21. Lukyanov, S. A., Gurskaia, N. G., Luk’ianov, K. A., Tarabykin, V. S., and Sverdlov, E. D. (1994) Highly-effective subtractive hybridization of cDNA, Bioorg. Khim., 20, 701–704.

    CAS  Google Scholar 

  22. Lukyanov, K. A., Gurskaya, N. G., Bogdanova, E. A., and Lukyanov, S. A. (1998) Selective suppression of polymerase chain reaction, Bioorg. Khim., 25, 163–170.

    Google Scholar 

  23. Siebert, P. D., Chenchik, A., Kellogg, D. E., Lukyanov, K. A., and Lukyanov, S. A. (1995) An improved PCR method for walking in uncloned genomic DNA, Nucleic Acids Res., 23, 1087–1088.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Jefferson, R. (1987) Assaying chimeric genes in plants: the GUS gene fusion system, Plant Mol. Biol. Rep., 5, 387–405.

    Article  CAS  Google Scholar 

  25. Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res., 29, e45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Benfey, P. N., Ren, L., and Chua, N. H. (1990) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains, EMBO J., 9, 1685–1696.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Odell, J. T., Knowlton, S., Lin, W., and Mauvais, C. J. (1988) Properties of an isolated transcription stimulating sequence derived from the cauliflower mosaic virus 35S promoter, Plant Mol. Biol., 10, 263–272.

    Article  PubMed  CAS  Google Scholar 

  28. Topfer, R., Prols, M., Schell, J., and Steinbiß, H. H. (1988) Transient gene expression in tobacco protoplasts: II. Comparison of the reporter gene systems for CAT, NPT II, and GUS, Plant Cell Rep., 7, 225–228.

    Article  PubMed  CAS  Google Scholar 

  29. Ivanov, I. P., Loughran, G., and Atkins, J. F. (2008) uORFs with unusual translational start codons autoregulate expression of eukaryotic ornithine decarboxylase homologs, Proc. Natl. Acad. Sci. USA, 105, 10079–10084.

    Article  PubMed  Google Scholar 

  30. Asano, K. (2014) Why is start codon selection so precise in eukaryotes? Translation, 2, e28387.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chugunova, A., Navalayeu, T., Dontsova, O., and Sergiev, P. (2018) Mining for small translated ORFs, J. Proteome Res., 17, 1–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. L. Dorokhov.

Additional information

Original Russian Text © E. V. Sheshukova, T. V. Komarova, N. M. Ershova, A. M. Bronstein, Y. L. Dorokhov, 2018, published in Biokhimiya, 2018, Vol. 83, No. 10, pp. 1562–1571. Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM18-120, September 17, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheshukova, E.V., Komarova, T.V., Ershova, N.M. et al. The Expression of Matryoshka Gene Encoding a Homologue of Kunitz Peptidase Inhibitor Is Regulated Both at the Level of Transcription and Translation. Biochemistry Moscow 83, 1255–1262 (2018). https://doi.org/10.1134/S0006297918100103

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297918100103

Keywords

Navigation