Skip to main content
Log in

Escherichia coli signal peptidase recognizes and cleaves archaeal signal sequence

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Tk1884, an open reading frame encoding α-amylase in Thermococcus kodakarensis, was cloned with the native signal sequence and expressed in Escherichia coli. Heterologous gene expression resulted in secretion of the recombinant protein to the extracellular culture medium. Extracellular α-amylase activity gradually increased after induction. Tk1884 was purified from the extracellular medium, and its molecular mass determined by electrospray ionization mass spectrometry indicated the cleavage of a few amino acids. The N-terminal amino acid sequence of the purified Tk1884 was determined, which revealed that the signal peptide was cleaved between Ala26 and Ala27 by E. coli signal peptidase. To the best of our knowledge, this is the first report describing an archaeal signal sequence recognized and cleaved by E. coli signal peptidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tuteja, R. (2005) Type I signal peptidase: an overview, Arch. Biochem. Biophys., 441, 107–111.

    Article  CAS  PubMed  Google Scholar 

  2. Schatz, G., and Dobberstein, B. (1996) Common principles of protein translocation across membranes, Science, 271, 1519–1526.

    Article  CAS  PubMed  Google Scholar 

  3. Bardy, S. L., Eichler, J., and Jarrell, K. F. (2003) Archaeal signal peptides–a comparative survey at the genome level, Protein Sci., 12, 1833–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Von Heijne, G. (1990) Protein targeting signals, Curr. Opin. Cell Biol., 2, 604–608.

    Article  Google Scholar 

  5. Brockmeier, U., Caspers, M., Freudl, R., Jockwer, A., Noll, T., and Eggert, T. (2006) Systematic screening of all signal peptides from Bacillus subtilis: a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria, J. Mol. Biol., 362, 393–402.

    Article  CAS  PubMed  Google Scholar 

  6. Ng, S. Y., Chaban, B., VanDyke, D. J., and Jarrell, K. F. (2007) Archaeal signal peptidases, Microbiology, 153, 305–314.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, S. Y. (1996) High cell density culture of Escherichia coli, Trends Biotechnol., 14, 98–105.

    Article  CAS  PubMed  Google Scholar 

  8. Marston, F. A. (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli, Biochem. J., 240, 1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thomas, J. G., and Baneyx, F. (1997) Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli, Protein Expres. Purif., 11, 289–296.

    Article  CAS  Google Scholar 

  10. Hockney, R. C. (1994) Recent developments in heterologous protein production in Escherichia coli, Trends Biotechnol., 12, 456–463.

    Article  CAS  PubMed  Google Scholar 

  11. Makrides, S. C. (1996) Strategies for achieving high-level expression of genes in Escherichia coli, Microbiol. Rev., 60, 512–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shokri, A., Sanden, A., and Larsson, G. (2003) Cell and process design for targeting of recombinant protein into the culture medium of Escherichia coli, Appl. Microbiol. Biotechnol., 60, 654–664.

    Article  CAS  PubMed  Google Scholar 

  13. Choi, J. H., and Lee, S. Y. (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli, Appl. Microbiol. Biotechnol., 64, 625–635.

    Article  CAS  PubMed  Google Scholar 

  14. Malik, B., Rashid, N., Ahmad, N., and Akhtar, M. (2013) Escherichia coli signal peptidase recognizes and cleaves the signal sequence of a-amylase originating from Bacillus licheniformis, Biochemistry (Moscow), 78, 958–962.

    Article  CAS  Google Scholar 

  15. Jalal, A., Rashid, N., Ahmed, N., Iftikhar, S., and Akhtar, M. (2011) Escherichia coli signal peptidase recognizes and cleaves the signal sequence of xylanase from a newly isolated Bacillus subtilis strain R5, Biochemistry (Moscow), 76, 347–349.

    Article  CAS  Google Scholar 

  16. Morikawa, M., Izawa, Y., Rashid, N., Hoaki, T., and Imanaka, T. (1994) Purification and characterization of a thermostable thiol protease from a newly isolated hyperthermophilic Pyrococcus sp., Appl. Environ. Microbiol., 60, 4559–4566.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Atomi, H., Fukui, T., Kanai, T., Morikawa, M., and Imanaka, T. (2004) Description of Thermococcus kodakaraensis sp. nov., a well studied hyperthermophilic archaeon previously reported as Pyrococcus sp. KOD1, Archaea, 1, 263–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Niehaus, F., Bertoldo, C., Kahler, M., and Antranikian, G. (1999) Extremophiles as a source of novel enzymes for industrial application, Appl. Microbiol. Biotechnol., 51, 711–729.

    Article  CAS  PubMed  Google Scholar 

  19. Rosano, G. L., and Ceccarelli, E. A. (2014) Recombinant protein expression in Escherichia coli: advances and challenges, Front. Microbiol., 5,172.

    PubMed  PubMed Central  Google Scholar 

  20. Shahhoseini, M., Ziaee, A. A., and Ghaemi, N. (2003) Expression and secretion of an a-amylase gene from a native strain of Bacillus licheniformis in Escherichia coli by T7 promoter and putative signal peptide of the gene, J. Appl. Microbiol., 95, 1250–1254.

    Article  CAS  PubMed  Google Scholar 

  21. Ikemura, H., Takagi, H., and Inouye, M. (1987) Requirement of prosequence for the production of active subtilisin E in Escherichia coli, J. Biol. Chem., 262, 7859–7864.

    CAS  PubMed  Google Scholar 

  22. Zhang, Q., Yan, X., Zhang, L., and Tang, W. (2006) Cloning, sequence analysis, and heterologous expreßsion of a β-mannanase gene from Bacillus subtilis Z-2, Mol. Biol., 40, 368–374.

    Article  CAS  Google Scholar 

  23. Yamabhai, M., Emrat, S., Sukasem, S., Pesatcha, P., Jaruseranee, N., and Buranabanyat, B. (2008) Secretion of recombinant Bacillus hydrolytic enzymes using Escherichia coli expression systems, J. Biotechnol., 133, 50–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naeem Rashid.

Additional information

Published in Russian in Biokhimiya, 2017, Vol. 82, No. 7, pp. 1069–1074.

Originally published in Biochemistry (Moscow) On-Line Papers in Press, as Manuscript BM17-112, May 8, 2017.

Electronic supplementary material

10541_2017_463_MOESM1_ESM.pdf

Majida Atta Muhammad, Samia Falak, Naeem Rashid, Qurra-tul-Ann Afza Gardner, Nasir Ahmad, Tadayuki Imanaka, and Muhammad Akhtar, Escherichia coli Signal Peptidase Recognizes and Cleaves Archaeal Signal Sequence (ISSN 0006-2979, Biochemistry (Moscow), 2017, Vol. 82, No. 7, pp. 821–825)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muhammad, M.A., Falak, S., Rashid, N. et al. Escherichia coli signal peptidase recognizes and cleaves archaeal signal sequence. Biochemistry Moscow 82, 821–825 (2017). https://doi.org/10.1134/S0006297917070070

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917070070

Keywords

Navigation