The article “Observer-Aided Output Feedback Synthesis as an Optimization Problem” by B. T. Polyak and M. V. Khlebnikov was originally published electronically in Springer-Link on 17 April 2022 in volume 83, issue 3, pages 303–324.

The formula for the gradient \( \nabla _L f(K,L,\alpha ) \) in Lemma 3 is given inaccurately; it should read

$$ \frac 12\nabla _Lf(K,L,\alpha )=\rho _LL+ {M}^{\mathrm {T}}_2YP{N}^{\mathrm {T}}_2-\frac {1}{\alpha }\begin {pmatrix}0 & I\end {pmatrix}Y\begin {pmatrix}D\\D-LD_1\end {pmatrix}{D}^{\mathrm {T}}_1. $$
(1)

Below find the full derivation of this result.

For differentiation of the function \( f(K,L,\alpha ) \) with respect to \( L \) under a constraint in the form of the Lyapunov equation

$$ \left (A_{K,L}+\frac {\alpha }{2}I\right )P+P {\left (A_{K,L}+\frac {\alpha }{2}I\right )}^{\mathrm {T}} +\frac {1}{\alpha }\begin {pmatrix}D\\D-LD_1\end {pmatrix} {\begin {pmatrix}D\\D-LD_1\end {pmatrix}}^{\mathrm {T}}=0, $$
(2)

we give an increment of \( \Delta L \) to the quantity \( L \) and denote the corresponding increment in \( P \) by \( \Delta P \),

$$ \begin{aligned} &\left (\mathcal A+M_1KN_1+M_2(L+\Delta L)N_2+\frac {\alpha }{2}I\right )(P+\Delta P) \\ &\qquad \qquad \qquad \qquad {}+(P+\Delta P) {\left (\mathcal A+M_1KN_1+M_2(L+\Delta L)N_2+\frac {\alpha }{2}I\right )}^{\mathrm {T}} \\ &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad {}+\frac {1}{\alpha }\begin {pmatrix}D\\D-(L+\Delta L)D_1\end {pmatrix} {\begin {pmatrix}D\\D-(L+\Delta L)D_1\end {pmatrix}}^{\mathrm {T}}=0.\end{aligned} $$

Leaving the notation \( \Delta P \) for the principal part of the increment, we obtain

$$ \begin{aligned} &{}\left (A_{K,L}+M_2\Delta LN_2+\frac {\alpha }{2}I\right )P+P {\left (A_{K,L}+M_2\Delta LN_2+\frac {\alpha }{2}I\right )}^{\mathrm {T}} \\ &\qquad \qquad \qquad {}+\left (A_{K,L}+\frac {\alpha }{2}I\right )\Delta P+\Delta P{\left (A_{K,L}+\frac {\alpha }{2}I\right )}^{\mathrm {T}} \\ &\qquad \qquad \qquad \qquad \qquad {}+\frac {1}{\alpha }\left [\begin {pmatrix}D\\D-LD_1\end {pmatrix} {\begin {pmatrix}D\\D-LD_1\end {pmatrix}}^{\mathrm {T}}- \begin {pmatrix}0\\ \Delta LD_1\end {pmatrix} {\begin {pmatrix}D\\D-LD_1\end {pmatrix}}^{\mathrm {T}}\right . \\ &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad {}\left .- \begin {pmatrix}D\\D-LD_1\end {pmatrix} {\begin {pmatrix}0\\\Delta LD_1\end {pmatrix}}^{\mathrm {T}} \right ]=0.\end{aligned} $$

After subtracting Eq. (2) from this equation, we have

$$ \begin {aligned} &{}\left (A_{K,L}+\frac {\alpha }{2}I\right )\Delta P+\Delta P {\left (A_{K,L}+\frac {\alpha }{2}I\right )}^{\mathrm {T}}+M_2\Delta LN_2P+P {(M_2\Delta LN_2)}^{\mathrm {T}} \\ &\qquad \qquad \qquad \qquad \qquad {} -\frac {1}{\alpha }\left [ \begin {pmatrix}0\\ \Delta LD_1\end {pmatrix} {\begin {pmatrix}D\\D-LD_1\end {pmatrix}}^{\mathrm {T}}+ \begin {pmatrix}D\\D-LD_1\end {pmatrix} {\begin {pmatrix}0\\\Delta LD_1\end {pmatrix}}^{\mathrm {T}}\right ]=0. \end {aligned} $$
(3)

Let us calculate the increment of the functional \( f(K,L,\alpha ) \) with respect to \( L \) by linearizing the relevant quantities,

$$ \begin{gathered} \Delta _Lf(K,L,\alpha )=\mathrm {tr}\, \mathcal C_2\Delta P {\mathcal C}^{\mathrm {T}}_2+\rho _L\mathrm {tr}\, {L}^{\mathrm {T}}\Delta L+\rho _L\mathrm {tr}\, {(\Delta L)}^{\mathrm {T}}L=\mathrm {tr}\,\Delta P {\mathcal C}^{\mathrm {T}}_2\mathcal C_2+2\rho _L\mathrm {tr}\, {L}^{\mathrm {T}}\Delta L.\end{gathered} $$

Consider the Lyapunov equation

$$ {\left (A_{K,L}+\frac {\alpha }{2}I\right )}^{\mathrm {T}}Y+Y\left (A_{K,L}+\frac {\alpha }{2}I\right )+ {\mathcal C}^{\mathrm {T}}_2\mathcal C_2=0. $$
(4)

From the dual equations (3) and (4), we have

$$ \begin{aligned} \Delta _Lf(K,L,\alpha )&=2\mathrm {tr}\, Y\left [M_2\Delta LN_2P-\frac {1}{\alpha } \begin {pmatrix}0\\ \Delta LD_1\end {pmatrix} {\begin {pmatrix}D\\D-LD_1\end {pmatrix}}^{\mathrm {T}}\,\right ]+2\rho _L\mathrm {tr}\, {L}^{\mathrm {T}}\Delta L \\ &=2\mathrm {tr}\left [N_2PYM_2\Delta L-\frac {1}{\alpha }D_1 {\begin {pmatrix}D\\D-LD_1\end {pmatrix}}^{\mathrm {T}}Y\begin {pmatrix}0\\ I\end {pmatrix}\Delta L\right ]+2\rho _L\mathrm {tr}\, {L}^{\mathrm {T}}\Delta L \\ &=2\Bigl \langle \rho _L L+ {M}^{\mathrm {T}}_2YP {N}^{\mathrm {T}}_2-\frac {1}{\alpha }\begin {pmatrix}0 & I\end {pmatrix}Y\begin {pmatrix}D\\D-LD_1\end {pmatrix} {D}^{\mathrm {T}}_1,\Delta L\Bigr \rangle ,\end{aligned} $$

whence formula (1) follows.

The original article can be found online at https://doi.org/10.1134/S0005117922030018 .