Skip to main content
Log in

Influence of the Main Characteristics of Low Weight Chitosan on the Growth of the Plant Pathogenic Fungus Botrytis сinerea

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

The effect of the main characteristics of low molecular weight chitosan obtained via enzymatic and chemical hydrolysis with a molecular mass (MM) of 2–100 kDa, a deacetylation degree (DD) of 60–98%, and a polydispersity (Mw/Mn) of 1.9–2.7 on the growth of Botrytis cinerea has been studied. The greatest inhibitory effect on the fungal germination process (a conidia germination index of less than 50%) was provided by chitosan samples with an MM of 2–13 kDa, a DD of 85–98%, and a polydispersity of 2–2.5. Among the most effective was chitosan with an MM of 13 kDa and a deacetylation degree 98%, which had a significant inhibitory effect on the growth of the fungal mycelium at concentration 0.938 mg/mL. This sample of chitosan and its complex with copper ions (75 ppm) significantly suppressed fungal metabolic activity (up to 20 and 10%, respectively), which indicates their high potential as antifungal agents for the development of fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Tan, W., Li, Q., Dong, F., Wei, L., and Guo, Z., Int. J. Biol. Macromol., 2016, vol. 92, pp. 293–298.

    Article  CAS  PubMed  Google Scholar 

  2. Badawy, M.E.I., Rabea, E.I., and Ismail, R.I.A., Curr. Bioact. Compd., 2015, vol. 11, no. 4, pp. P. 264–273.

  3. Abu, QamarS., Moustafa, K., and Tran, L.-S.P., Crit. Rev. Biotechnol., 2017, vol. 37, no. 2, pp. 262–274.

    Article  CAS  Google Scholar 

  4. Badawy, M.E.I. and Rabea, E.I., Int. J. Carbohydr. Chem., 2011, article ID 460381. https://doi.org/10.1155/2011/460381

  5. Sharp, R., Agronomy, 2013, vol. 3, no. 4, pp. 757–793.

    Article  CAS  Google Scholar 

  6. Ghormade, V., Pathan, E.K., and Deshpande, M.V., Int. J. Biol. Macromol., 2017, vol. 104, pt. B, pp. 1415–1421.

  7. Kean, T. and Thanou, M., Adv. Drug Deliv. Rev., 2010, vol. 62, no. 1, pp. 3–11.

    Article  CAS  PubMed  Google Scholar 

  8. Katiyar, D., Hemantaranjan, A., Singh, B., and Bhanu, A.N., Adv. Plants Agric. Res., 2014, vol. 1, no. 1, pp. 1–8.

    Google Scholar 

  9. Yang, L.-Y., Zhang, J.-L., Bassett, C.L., and Meng, X.-H., LWT—Food Sci. Technol., 2012, vol. 46, no. 1, pp. 254–259.

    Article  CAS  Google Scholar 

  10. Seyfarth, F., Schliemann, S., Elsner, P., and Hipler, U.-C., Int. J. Pharm., 2008, vol. 353, nos. 1–2, pp. 139–148.

    CAS  PubMed  Google Scholar 

  11. Yoonkyung, P., Kim, M.-H., Park, S.-C., Cheong, H., Jang, M.-K., Nah, J.-W., and Hahm, K.-S., J. Microbiol. Biotechnol., 2008, vol. 18, no. 10, pp. 1729–1734.

    Google Scholar 

  12. Badawy, M.E.I. and Rabea, E.I., Biol. Technol., 2009, vol. 51, no. 1, pp. 110–117.

    Article  CAS  Google Scholar 

  13. Rahman, M.H., Hjeljord, L.G., Aam, B.B., Sorlie, M., and Tronsmo, A., Eur. J. Plant Pathol., 2015, vol. 141, no. 1, pp. 147–158.

    Article  CAS  Google Scholar 

  14. Lyalina, T.S., Tereshina, V.M., and Varlamov, V.P., Izv. Ufim. Nauchn. Tsentra Ross. Akad. Nauk, 2017, no. 3 (1), pp. 110–113.

  15. Aranaz, I., Mengibar, M., Harris, R., Panos, I., Miralles, B., Acosta, N., Galed, G., and Heras, A., Curr. Chem. Biol., 2009, vol. 3, no. 2, pp. 203–230.

    CAS  Google Scholar 

  16. Badawy, M.E.I., J. Appl. Polym. Sci., 2010, vol. 117, no. 2, pp. 960–969.

    Article  CAS  Google Scholar 

  17. Falcon, A.B., Cabrera, J.C., Costales, D., Ramirez, M.A., Cabrera, G., Toledo, V., and Martinez-Tellez, M.A., World J. Microbiol. Biotechnol., 2008, vol. 24, no. 1, pp. 103–112.

  18. Allan, C.R. and Hadwiger, L.A., Exp. Mycol., 1979, vol. 3, no. 3, pp. 285–287.

    Article  CAS  Google Scholar 

  19. Choi, B.-K., Kim, K.-Y., Yoo, Y.-J., Oh, S.-J., Choi, J.-H., and Kim, C.-Y., Int. J. Antimicrob. Agent., 2001, vol. 18, no. 6, pp. 553–557.

    Article  CAS  Google Scholar 

  20. Sadeghi, A.M.M., Dorkoosh, F.A., Avadi, M.R., Saadat, P., Rafiee-Tehrani, M., and Junginger, H.E., Int. J. Pharm., 2008, vol. 355, nos. 1–2, pp. 299–306.

    Article  CAS  PubMed  Google Scholar 

  21. Liu, W., Qin, Y., Liu, S., Xing, R., Yu, H., Chen, X., Li, K., and Li, P., Carbohydr. Res., 2017, vol. 160, no. 7, pp. 97–105.

    Article  CAS  Google Scholar 

  22. Hudecova, D., Varecka, L., Vollek, V., and Betina, V., Folia Microbiol., 1994, vol. 39, no. 4, pp. 269–275.

    Article  CAS  Google Scholar 

  23. Shagdarova, B.Ts., Il’ina, A.V., and Varlamov, V.P., Appl. Biochem. Microbiol., 2016, vol. 52, no. 2, pp. 222–225.

    Article  CAS  Google Scholar 

  24. Shagdarova, B.Ts., Il’ina, A.V., Lopatin, S.A., Kartashov, M.I., Arslanova, L.R., Dzhavakhiya, V.G., and Varlamov, V.P., Appl. Biochem. Microbiol., 2018, vol. 54, no. 1, pp. 71–75.

    Article  CAS  Google Scholar 

  25. Khasanova, L.M., Il’ina, A.V., Varlamov, V.P., Sinitsyna, O.A., and Sinitsyn, A.P., Appl. Biochem. Microbiol., 2014, vol. 50, no. 4, pp. 381–386.

    Article  CAS  Google Scholar 

  26. Il’ina, A.V. and Varlamov, V.P., Appl. Biochem. Microbiol., 2004, vol. 40, no. 6, pp. 599–602.

    Article  Google Scholar 

  27. Park, Y., Kim, M.-H., Park, S.-C., Cheong, H., Jang, M.-K., Nah, J.-W., and Hahm, K.-S., J. Microbiol. Biotechnol., 2008, vol. 18, no. 10, pp. 1729–1734.

    CAS  PubMed  Google Scholar 

  28. Qiu, M., Wu, C., Ren, G., Liang, X., Wang, X., and Huang, J., Food Chem., 2014, vol. 155, pp. 105–111.

    Article  CAS  PubMed  Google Scholar 

  29. Kulikov, S.N., Chirkov, S.N., Il’ina, A.V., Lopatin, S.A., and Varlamov, V.P., Appl. Biochem. Microbiol., 2006, vol. 42, no. 2, pp. 200–203.

    Article  CAS  Google Scholar 

  30. Guo, Z., Xing, R., Liu, S., Zhong, Z., Ji, X., Wang, L., and Li, P., Carbohydr. Res., 2008, vol. 71, pp. 694–697.

    Article  CAS  Google Scholar 

  31. Yevlampieva, N.P., Gubarev, A.S., Gorshkova, M.Yu., Okrugin, B.M., and Ryumtsev, E.I., J. Polym. Res., 2015, vol. 22, p. 166.

    Article  CAS  Google Scholar 

  32. Yoon, C.S., Yeoung, Y.R., and Kim, B.S., Kor. J. Hort. Sci. Technol., 2010, vol. 28, no. 6, pp. 1072–1077.

    CAS  Google Scholar 

  33. Boumaaza, B., Benkhelifa, M., and Belkhoudja, M., Int. J. Microbiol., 2015, vol. 2015, article ID 572626. https://doi.org/10.1155/2015/572626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.A. Lopatin (Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center Fundamentals of Biotechnology, Russian Academy of Sciences) for the high-efficiency gel permeation chromatography of the chitosan samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Karpova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpova, N.V., Shagdarova, B.T., Lyalina, T.S. et al. Influence of the Main Characteristics of Low Weight Chitosan on the Growth of the Plant Pathogenic Fungus Botrytis сinerea. Appl Biochem Microbiol 55, 405–413 (2019). https://doi.org/10.1134/S0003683819040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683819040069

Keywords:

Navigation