Skip to main content
Log in

Fermentation of Detoxified Acid-Hydrolyzed Pyrolytic Anhydrosugars into Bioethanol with Saccharomyces cerevisiae 2.399

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Pyrolysate obtained from the pyrolysis of waste cotton is a source of fermentable sugars that could be fermented into bioethanol fuel and other chemicals via microbial fermentation. However, pyrolysate is a complex mixture of fermentable and non-fermentable substrates causing inhibition of the microbial growth. The aim of this study was to detoxify the hydrolysate and then ferment it into bio-ethanol fuel in shake flasks and fermenter applying yeast strain Saccharomyces cerevisiae 2.399. Pyrolysate was hydrolyzed to glucose with 0.2 M sulfuric acid, neutralized with Ba(OH)2 followed by treatment with ethyl acetate and activated carbon to remove fermentation inhibitors. The effect of various fermentation parameters such as inoculum concentration, pH and hydrolysate glucose was evaluated in shake flasks for optimum ethanol fermentation. With respect to inoculum concentration, 20% v/v inoculum i.e. 8.0 × 108–1.2 × 109 cells/mL was the optimum level for producing 8.62 ± 0.33 g/L ethanol at 9 h of fermentation with a maximum yield of 0.46 g ethanol/g glucose. The optimum pH for hydrolysate glucose fermentation was found to be 6.0 that produced 8.57 ± 0.66 g/L ethanol. Maximum ethanol concentration, 14.78 g/L was obtained for 4% hydrolysate glucose concentration after 16 h of fermentation. Scale-up studies in stirred fermenter produced much higher productivity (1.32 g/L/h–1) compared to shake flask fermentation (0.92 g/L/h–1). The yield of ethanol reached a maximum of 91% and 89% of the theoretical yield of ethanol in shake flasks and fermenter, respectively. The complex of integrated models of development was applied, that has been successfully tested previously for the mathematical analysis of the fermentation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schauer, J.J., Kleeman, M.J., Cass, G.R., and Simoneit, B.R., Environ. Sci. Technol., 2002, vol. 36, no. 6, pp. 1169–1180.

    Article  CAS  PubMed  Google Scholar 

  2. Jayakody, L.N., Ferdouse, J., Hayashi, N., and Kitagaki, H., Crit. Rev. Biotechnol., 2016, vol. 36, no. 1, pp. 1–13.

    Article  Google Scholar 

  3. Islam, Z.U., Zhisheng, Y., Dongdong, C., and Hongxun, Z., J. Ind. Microbiol. Biot., 2015, vol. 42, no. 12, pp. 1–23.

    Article  Google Scholar 

  4. Chang, D., Yu, Z., Islam, Z.U., and Zhang, H., Appl. Microbiol. Biot., 2015, vol. 99, no. 9, pp. 4093–4105.

    Article  CAS  Google Scholar 

  5. Vicente, A., Calvo, A.I., Fernandes, A.P., Nunes, T., Monteiro, C., Almeida, S.M., and Pio, C., Atmos. Environ., 2013, vol. 71, pp. 295–303.

    Article  CAS  Google Scholar 

  6. Lian, J., Choi, J., Tan, Y.S., Howe, A., Wen, Z., and Jarboe, L.R., PLoS One, 2016, vol. 11, no. 2, p. e0149336.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rover, M.R., Johnston, P.A., Jin, T., Smith, R.G., Brown, R.C., and Jarboe, L., Chem. Sus. Chem., 2014, vol. 7, no. 6, pp. 1662–1668.

    Article  CAS  Google Scholar 

  8. Shen, Y., Jarboe, L., Brown, R., and Wen, Z., Biotechnol. Adv., 2015, vol. 33, no. 8, pp. 1799–1813.

    Article  CAS  PubMed  Google Scholar 

  9. Patwardhan, P.R., Satrio, J.A., Brown, R.C., and Shanks, B.H., J. Anal. Appl. Pyrol., 2009, vol. 86, no. 2, pp. 323–330.

    Article  CAS  Google Scholar 

  10. Zhuang, X., Zhang, H., Yang, J., and Qi, H., Bioresour. Technol., 2001, vol. 79, no. 1, pp. 63–66.

    Article  CAS  PubMed  Google Scholar 

  11. Xie, H., Zhuang, X., Bai, Z., Qi, H., and Zhang, H., World J. Microb. Biot., 2006, vol. 22, no. 9, pp. 887–892.

    Article  CAS  Google Scholar 

  12. Xie, H.-J., Zhuang, X.-L., Zhang, H., Bai, Z.-H., and Qi, H.-Y., FEMS Microbiol. Lett., 2005, vol. 251, no. 2, pp. 313–319.

    Article  CAS  PubMed  Google Scholar 

  13. Zhuang, X. and Zhang, H., Protein Expres. Purif., 2002, vol. 26, no. 1, pp. 71–81.

    Article  CAS  Google Scholar 

  14. Ning, J., Yu, Z., Xie, H., Zhang, H., Zhuang, G., Bai, Z., Yang, S., and Jiang, Y., World J. Microb. Biot., 2008, vol. 24, no. 1, pp. 15–22.

    Article  CAS  Google Scholar 

  15. Yu, Z. and Zhang, H., Biomass Bioenerg., 2003, vol. 24, no. 3, pp. 257–262.

    Article  CAS  Google Scholar 

  16. Yu, Z. and Zhang, H., Bioresour. Technol., 2004, vol. 93, no. 2, pp. 199–204.

    Article  CAS  PubMed  Google Scholar 

  17. Lian, J., Chen, S., Zhou, S., Wang, Z., O’Fallon, J., Li, C.-Z., and Garcia-Perez, M., Bioresour. Technol., 2010, vol. 101, no. 24, pp. 9688–9699.

    Article  CAS  PubMed  Google Scholar 

  18. Wang, H., Livingston, D., Srinivasan, R., Li, Q., Steele, P., and Yu, F., Appl. Biochem. Biotech., 2012, vol. 168, no. 6, pp. 1568–1583.

    Article  CAS  Google Scholar 

  19. Lian, J., Garcia–Perez, M., and Chen, S., Bioresour. Technol., 2013, vol. 133, pp. 183–189.

    Article  CAS  PubMed  Google Scholar 

  20. Sukhbaatar, B., Li, Q., Wan, C, Yu, F., Hassan, E.-B., and Steele, P., Bioresour. Technol., 2014, vol. 161, pp. 379–384.

    Article  CAS  PubMed  Google Scholar 

  21. Luque, L., Westerhof, R., Van Rossum, G., Oudenhoven, S., Kersten, S., Berruti, F., and Rehmann, L., Bioresour. Technol., 2014, vol. 161, pp. 20–28.

    Article  CAS  PubMed  Google Scholar 

  22. Klykov, S. and Derbyshev, V., Biotekhnologia, 2009, vol. 5, pp. 80–89.

    Google Scholar 

  23. Klykov, S., Kurakov, V., Vilkov, V., Demidyuk, I., Gromova, T.Y., and Skladnev, D., Biofabrication, 2011, vol. 3, pp. 4.

    Article  Google Scholar 

  24. Derbyshev, V., Klykov, S., Glukhov, N., and Shcherbakov, G.Y., Biotekhnologia, 2001, vol. 2, p. 89.

    Google Scholar 

  25. Jonsson, L.J. and Martin, C., Bioresour. Technol., 2016, vol. 199, no., pp. 103–112.

    Article  PubMed  Google Scholar 

  26. Ding, M.–Z., Wang, X., Yang, Y., and Yuan, Y.-L., OMICS, 2011, vol. 15, no. 10, pp. 647–653.

    Article  CAS  PubMed  Google Scholar 

  27. Liang, Y., Zhao, X., Chi, Z., Rover, M., Johnston, P., Brown, R., Jarboe, L., and Wen, Z., Bioresour. Technol., 2013, vol. 133, pp. 500–506.

    Article  CAS  PubMed  Google Scholar 

  28. Carrau, F., Medina, K., Farina, L., Boido, E., and Dellacassa, E., Int. J. Food Microbiol., 2010, vol. 143, no. 1, pp. 81–85.

    Article  CAS  PubMed  Google Scholar 

  29. Arshad, M., Khan, Z., Shah, F., and Rajoka, M., Lett. Appl. Microbiol., 2008, vol. 47, no. 5, pp. 410–414.

    Article  CAS  PubMed  Google Scholar 

  30. Laluce, C, Tognolli, J.O., De Oliveira, K.F., Souza, C.S., and Morais, M.R., Appl. Microbiol. Biot., 2009, vol. 83, no. 4, pp. 627–637.

    Article  CAS  Google Scholar 

  31. Kasemets, K., Nisamedtinov, I., Laht, T.–M., Abner, K., and Paalme, T., Antonie van Leeuwenhoek, 2007, vol. 92, no. 1, pp. 109–128.

    Article  CAS  PubMed  Google Scholar 

  32. Lin, Y., Zhang, W., Li, C, Sakakibara, K., Tanaka, S., and Kong, H., Biomass Bioenerg., 2012, vol. 47, pp. 395–401.

    Article  CAS  Google Scholar 

  33. Narendranath, N.V. and Power, R., Appl. Environ. Microbiol., 2005, vol. 71, no. 5, pp. 2239–2243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dada, O., Kalil, M., and Yusoff, W., Bacteriol. J., 2012, vol. 2, no., pp. 79–89.

    Article  Google Scholar 

  35. Sanchez, O.J. and Cardona, C.A., Bioresour. Technol., 2008, vol. 99, no. 13, pp. 5270–5295.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Yu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, Z.U., Klykov, S.P., Yu, Z. et al. Fermentation of Detoxified Acid-Hydrolyzed Pyrolytic Anhydrosugars into Bioethanol with Saccharomyces cerevisiae 2.399. Appl Biochem Microbiol 54, 58–70 (2018). https://doi.org/10.1134/S0003683818010143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683818010143

Keywords

Navigation