Skip to main content
Log in

Characterization of a novel thermo-stable lipase from endophyte Pseudomonas putida in Pistacia chinensis Bunge

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

A novel lipolytic enzyme-producing endophytic strain PC2 was successfully isolated from the seeds of an ideal bioenergy plant Pistacia chinensis Bunge. Based on the analysis of morphology and 16S rRNA sequence, bacterial strain PC2 was identified as a subspecies of Pseudomonas putida, therefore named as P. putida PC2. Whole-genome sequencing showed PC2 contained a 1224-nucleotide lipase gene (named lip-PC2) predicted to encode a 407-amino-acid protein. Purified lipases from both the original PC2 strain and heterologously expressed Escherichia coli were nearly 50 kD with specific activity of 9.48 U/mL. LIP-PC2 displayed the maximal activity at 50°C or pH 8.0, and maintained above 80% relative activity in the range of from 40 to 60°C or pH in the range of from 6.0 to 8.0, indicating thermostable and alkaline properties. Enzyme activity was enhanced by Mg2+, Na+ and Mn2+, but strongly inhibited by Cu2+, Zn2+ Co2+, EDTA as well as organic solvents and surfactants. Additionally, the analysis of amino acid sequence and structure indicated that LIP-PC2 was a novel member belonging to family I.3 of bacterial lipolytic enzymes and its catalytic triad was consisted of Ser-200, Asp-342 and His-374.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, H.L., Zhang, Z.X., Lin, S.Z., and Li, X.X., Forestry Studies in China, 2007, vol. 9, no. 2, pp. 164–168.

    Article  Google Scholar 

  2. Xiong, E., Wu, X., Shi, J., Wang, X., and Wang, W., PLoS One, 2013, vol. 8, no. 5, p. e64276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Piromyou, P., Songwattana, P., Greetatorn, T., Okubo, T., Kakizaki, K.C., Prakamhang, J., et al., Microbes Environ., 2015, vol. 30, no. 4, pp. 291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carrell, A.A. and Frank, A.C., Front. Microbiol., 2014, vol. 5, no. 333, p. 10.3389.

    Google Scholar 

  5. Sahai, A.S. and Manocha, M.S., FEMS Microbiol. Rev., 1993, vol. 11, no. 4, pp. 317–338.

    Article  CAS  Google Scholar 

  6. Zhang, H.W., Song, Y.C., and Tan, R.X., Nat. Prod. Rep., 2006, vol. 23, no. 5, pp. 753–771.

    Article  CAS  PubMed  Google Scholar 

  7. Song, C.Z. and Chen, D.H., Res. J. Biotech., 2015, vol. 10, no. 8, pp. 105–112.

    Google Scholar 

  8. Olson, G.J., Woese, C.R., and Overbeek, R., J. Bacteriol., 1994, vol. 176, pp. 1–6.

    Article  Google Scholar 

  9. Jaeger, K.E., Ransac, S., Dijkstra, B.W., Colson, C., van Heuve., M., and Misset, O., FEMS Microbiol. Rev., 1994, vol. 15, no. 1, pp. 29–63.

    Article  CAS  Google Scholar 

  10. Jaeger, K.E. and Eggert, T., Curr. Opin. Biotech., 2002, vol. 13, no. 4, pp. 390–397.

    Article  CAS  PubMed  Google Scholar 

  11. Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B.W., Frolow, F., Franken, S.M., et al., Protein Eng., 1992, vol. 5, pp. 197–211.

    Article  CAS  PubMed  Google Scholar 

  12. Arpigny, J.L. and Jaeger, K.E., Biochem. J., 1999, vol. 343, no. 1, pp. 177–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tanaka, D., Yoneda, S., Yamashiro, Y., Sakatoku, A., Kayashima, T., Yamakawa, K., et al., Appl. Biochem. Biotech., 2012, vol. 168, no. 2, pp. 327–338.

    Article  CAS  Google Scholar 

  14. Charbonneau, D.M. and Beauregard, M., PLoS One, 2013, vol. 8, no. 10, p. e76675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, H.J., Jeong, Y.S., Jung, W.K., Kim, S.K., Lee, H.W., Kahng, H.Y., et al., Mol. Biotech., 2015, vol. 57, no. 9, pp. 781–792.

    Article  CAS  Google Scholar 

  16. Winkler, U.K. and Stuckmann, M., J. Bacteriol., 1979, vol. 138, no. 3, pp. 663–670.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., and Nucleic Acids Res., 1997, vol. 25, pp. 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S., Mol. Biol. Evol., 2013, vol. 30, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Petersen, T.N., Brunak, S., von Heijn., G., and Nielsen, H., Nat. Methods, 2011, vol. 8, no. 10, pp. 785–786.

    Article  CAS  Google Scholar 

  20. Bjellqvist, B., Basse, B., Olsen, E., and Celis, J.E., Electrophoresis, 1994, vol. 15, no. 1, pp. 529–539.

    Article  CAS  PubMed  Google Scholar 

  21. Bjellqvist, B., Hughes, G.J., Pasquali, C., Paquet, N., Ravier, F., Sanchez, J.C., et al., Electrophoresis, 1993, vol. 14, no. 1, 1023–1033.

    Article  CAS  PubMed  Google Scholar 

  22. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.E., Wilkins, M.R., Appel, R.D., et al., Humana Press, 2005.

    Google Scholar 

  23. Robert, X. and Gouet, P., Nucleic Acids Res., 2, vol. 42, no. W1, pp. W320–W324.

  24. Ericsson, D.J., Kasrayan, A., Johansson, P., Bergfors, T., Sandstrom, A.G., Bäckvall, J.E., et al., J. Mol. Biol., 2008, vol. 376, no. 1, pp. 109–119.

    Article  CAS  PubMed  Google Scholar 

  25. Angkawidjaja, C., Kanaya, S., Cell Mol. Life Sci., 2006, vol. 63, pp. 2804–2817.

    Article  CAS  PubMed  Google Scholar 

  26. Rashid, N., Shimada, Y., Ezaki, S., Atomi, H., and Imanaka, T., Appl. Environ. Microbiol., 2001, vol. 67, no. 9, pp. 4064–4069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamashiro, Y., Sakatoku, A., Tanaka, D., and Nakamura, S., Appl. Biochem. Biotechnol., 2013, vol. 171, pp. 989–1000.

    Article  CAS  PubMed  Google Scholar 

  28. Amada, K., Haruki, M., Imanaka, T., Morikawa, M., and Kanaya, S., Biochem. Biophys. Acta—Protein Struct. M., 2000, vol. 1478, no. 2, pp. 201–210.

    CAS  Google Scholar 

  29. Luo, Y., Zheng, Y., Jiang, Z., Ma, Y., and Wei, D., Appl. Microbiol. Biotech., 2006, vol. 73, no. 2, pp. 349–355.

    Article  CAS  Google Scholar 

  30. Madan, B. and Mishra, P., Appl. Microbiol. Biotech., 2010, vol. 85, no. 3, pp. 597–604.

    Article  CAS  Google Scholar 

  31. Panizza, P., Syfantou, N., Pastor, F.I.J., Rodriguez, S., and Diaz, P., J. Appl. Microbiol., 2013, vol. 114, no. 3, pp. 722–732.

    Article  CAS  PubMed  Google Scholar 

  32. Angkawidjaja, C., You, D.J., Matsumura, H., Kuwahara, K., Koga, Y., Takano, K., et al., FEBS Lett., 2007, vol. 581, no. 26, pp. 5060–5064.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, J., Jang, S.H., and Lee, C.W., Biosci. Biotech. Biochem., 2013, vol. 77, no. 2, pp. 320–323.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Chen.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Liu, Z., Xie, Q. et al. Characterization of a novel thermo-stable lipase from endophyte Pseudomonas putida in Pistacia chinensis Bunge. Appl Biochem Microbiol 53, 524–532 (2017). https://doi.org/10.1134/S0003683817050143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683817050143

Keywords

Navigation