Skip to main content
Log in

Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics

  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We consider the optimal recovery problem for the solution of the Dirichlet problem for the Laplace equation in the unit d-dimensional ball on a sphere of radius ρ from a finite collection of inaccurately specified Fourier coefficients of the solution on a sphere of radius r, 0 < r < ρ < 1. The methods are required to be exact on certain subspaces of spherical harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. M. Nikol’skii, “Concerning estimation for approximate quadrature formulas,” Uspekhi Mat. Nauk 5 (2 (36)), 165–177 (1950).

    MathSciNet  Google Scholar 

  2. A. Sard, “Best approximative integration formulas; best approximation formulas,” Amer. J. Math. 71 (1), 80–91 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  3. J. F. Traub and H. Woźniakowski, A General Theory of Optimal Algorithms (Academic Press, New York, 1980).

    MATH  Google Scholar 

  4. L. Plaskota, Noisy Information and Computational Complexity (Cambridge Univ. Press, Cambridge, 1996).

    Book  MATH  Google Scholar 

  5. K. Yu. Osipenko, Optimal Recovery of Analytic Functions (Nova Science Publ., Huntington, NY, 2000).

    Google Scholar 

  6. G. G. Magaril-Il’yaev and V. M. Tikhomirov, Convex Analysis and Its Applications (Éditorial URSS, Moscow, 2011) [in Russian].

    MATH  Google Scholar 

  7. G. G. Magaril-Il’yaev and K. Yu. Osipenko, “Exactness and optimality of methods for recovering functions from their spectrum,” in Trudy Mat. Inst. Steklova, Vol. 293: Function Spaces, Approximation Theory, and Related Problems of Mathematical Analysis (MAIK Nauka/Interperiodica, Moscow, 2016), pp. 201–216 [Proc. Steklov Inst. Math. 293, 194–208 (2016)].

    Google Scholar 

  8. K. Yu. Osipenko, “On the reconstruction of the solution of the Dirichlet problem from inexact initial data,” Vladikavkaz.Mat. Zh. 6 (4), 55–62 (2004).

    MathSciNet  MATH  Google Scholar 

  9. E. A. Balova, “Optimal Reconstruction of the solution of the Dirichlet problem from inaccurate input data,” Mat. Zametki 82 (3), 323–334 (2007) [Math. Notes 82 (3), 285–294 (2007)].

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, NJ, 1971; Mir, Moscow, 1974).

    MATH  Google Scholar 

  11. K. Yu. Osipenko, “Optimal recovery of linear operators in non-Euclidean metrics,” Mat. Sb. 205 (10), 77–106 (2014) [Sb.Math. 205 (10), 1442–1472 (2014)].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Balova.

Additional information

Original Russian Text © E. A. Balova, K. Yu. Osipenko, 2018, published in Matematicheskie Zametki, 2018, Vol. 104, No. 6, pp. 803–811.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balova, E.A., Osipenko, K.Y. Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics. Math Notes 104, 781–788 (2018). https://doi.org/10.1134/S0001434618110238

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434618110238

Keywords

Navigation