Skip to main content
Log in

Adaptation of the Parameterization of the Nonlinear Energy Transfer for Short Fetch Conditions in the WAVEWATCH III Wave Prediction Model

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The parameterization of the nonlinear energy transfer called Discrete Interaction Approximation (DIA) is optimized in the WAVEWATCH III wave model by the criterion of minimizing deviations of model predictions from the data of field measurements. Short fetches are considered for which the wind-input source function had been previously adjusted. The results of the numerical simulation and field experiment for the DIA built-in version and for the DIA with the proposed parameters are compared. The improvement of the reproduction of the main parameters of the wave spectra, significant wave height, and their mean period by the model is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. User Manual and System Documentation of W-AVEWATCH III (R) Version 5.16. Tech. Note 329 (NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 2016).

  2. SWAN—User Manual (Delft University of Technology, Delft, 2016).

  3. H. Gunter, S. Hasselmann, and P. A. E. M. Janssen, “The WAM model cycle 4,” in DKRZ WAM Model Documentation (Deutsches Klimarechenzentrum, Hamburg, 1992).

  4. Weather Research and Forecasting Model. www. mmm.ucar.edu/weather-research-and-forecasting-model

  5. European Centre for Medium-Range Weather Forecasts. www.ecmwf.int/

  6. M. A. Donelan, F. W. Dobson, S. D. Smith, and R. J. Anderson, “On the dependence of sea surface roughness on wave development,” Phys. Oceanogr 23, 2143–2149 (1993).

    Article  Google Scholar 

  7. G. J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, Dynamics and Modeling of Ocean Waves (Cambridge University Press, Cambridge, 1996).

  8. A. M. Kuznetsova, G. A. Baydakov, V. V. Papko, A. A. Kandaurov, M. I. Vdovin, D. A. Sergeev, and Yu. I. Troitskaya, “Adjusting of wind input source term in WAVEWATCH III model for the middle-sized water body on the basis of the field experiment,” Adv. Meteorol. 1, art. 574602 (2016).

    Google Scholar 

  9. A. M. Kuznetsova, G. A. Baidakov, V. V. Papko, A. A. Kandaurov, M. I. Vdovin, D. A. Sergeev, and Yu. I. Troitskaya, “Field experiments and numerical modeling of wind speed and surface waves in medium-size inland reservoirs,” Russ. Meteorol. Hydrol. 41, 136–145 (2016).

    Article  Google Scholar 

  10. K. K. Kahma and J. Ch. Calkoen, “Reconciling discrepancies in the observed growth of wind-generated waves,” J. Phys. Oceanogr. 22, 1389–1405 (1992).

    Article  Google Scholar 

  11. O. M. Phillips, “On the dynamics of unsteady gravity waves of finite amplitude,” J. Fluid Mech. 9, 193–217 (1960).

    Article  Google Scholar 

  12. K. Hasselmann, “On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory,” J. Fluid Mech. 12, 481–500 (1962).

    Article  Google Scholar 

  13. V. E. Zakharov, S. I. Badulin, V. V. Geogjaev, and A. N. Pushkarev, “Weak-turbulent theory of wind-driven sea,” Earth Space Sci. 6 (4), 540–556 (2019).

    Article  Google Scholar 

  14. K. Herterich and K. Hasselmann, “A similarity relation for the nonlinear energy transfer in a finite-depth gravity-wave spectrum,” J. Fluid Mech. 97, 215–224 (1980).

    Article  Google Scholar 

  15. G. Ph. Van Vledder, “Efficient algorithms for computing non-linear four-wave interactions,” ECMWF Workshop on Ocean Waves, Reading, 25–27 June 2012 (ECMWF, Reading, UK, 2012), p. 97.

  16. S. Hasselmann and K. Hasselmann, “Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: a new method for efficient computations of the exact nonlinear transfer integral,” J. Phys. Oceanogr. 15, 1369–1377 (1985)

    Article  Google Scholar 

  17. S. Hasselmann, K. Hasselmann, J. H. Allender, and T. P. Barnett, “Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: parameterizations of nonlinear energy transfer for application in wave models,” J. Phys. Oceanogr. 15, 1378–1391 (1985).

    Article  Google Scholar 

  18. N. Hashimoto and K. Kawaguchi, “Extension and modification of discrete interaction approximation (DIA) for computing nonlinear energy transfer of gravity wave spectra,” Proc. 4th Int. Symp. on Ocean Waves, Measurement & Analysis, San Francisco, September 2–September 6,2001 (San Francisco, 2001), p. 530.

  19. B. Tracy and D. T. Resio, Theory and Calculation of the Nonlinear Energy Transfer Between Sea Waves in Deep Water. WES Report 11 (US Army Engineer. Waterways Experiment Station, Vicksburg, MS, 1982).

    Google Scholar 

  20. D. T. Resio and W. Perrie, “A numerical study of nonlinear energy fluxes due to wave-wave interactions. Part 1. Methodology and basic results,” J. Fluid Mech. 223, 609–629 (1991).

    Article  Google Scholar 

  21. H. L. Tolman, A Genetic Optimization Package for the Generalized Multiple DIA in WAVEWATCH III R. Ver. 1.0. Tech. Note 289 (NOAA/NWS/NCEP/MMAB, College Park, MD, USA, 2010).

    Google Scholar 

  22. D. T. Resio and W. Perrie, “A two-scale approximation for efficient representation of nonlinear energy transfers in a wind wave spectrum. Part II: application to observed wave spectra,” J. Phys. Oceanogr. 38 (12), 2801–2816 (2009).

    Article  Google Scholar 

  23. W. Perrie, B. Toulany, D. T. Resio, A. Roland, and J.‑P. Auclair, “A two-scale approximation for wave–wave interactions in an operational wave model,” Ocean Modell. 70, 38–51 (2013).

    Article  Google Scholar 

  24. P. A. Hwang, “A note on the ocean surface roughness spectrum,” J. Atmos. Oceanic Techn. 28, 436–443 (2011).

    Article  Google Scholar 

  25. C. W. Fairall, E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, “Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm,” J. Clim. 16 (4), 571–591 (2003).

    Article  Google Scholar 

  26. R. L. Snyder, F. W. Dobson, J. A. Elliott, and R. B. Long, “Array measurement of atmospheric pressure fluctuations above surface gravity waves,” J. Fluid Mech. 102, 1–59 (1981).

    Article  Google Scholar 

  27. J. Wu, “Wind-stress coefficients over sea surface from breeze to hurricane,” J. Geophys. Res. 87 (C12), 9704–9706 (1982)

    Article  Google Scholar 

  28. M. A. Donelan, A. V. Babanin, I. R. Young, and M. L. Banner, “Wave-follower field measurements of the wind-input spectral function. Part II: parameterization of the wind input,” J. Phys. Oceanogr. 36, 1672–1689 (2006).

    Article  Google Scholar 

  29. A. V. Babanin, M. L. Banner, I. R. Young, and M. A. Donelan, “Wave-follower field measurements of the wind-input spectral function. Part III: parameterization of the wind input due to wave breaking,” J. Phys. Oceanogr. 37, 2764–2775 (2007).

    Article  Google Scholar 

Download references

Funding

The program for adjusting nonlinearity model was supported by the Russian Foundation for Basic Research, project no. 18-35-00602. Field measurements at the Gorky Reservoir were supported by the Russian Foundation for Basic Research, project no. 17-05-41117. The work on surface wave calculations within the adapted WAVEWATCH III model was partially supported by the Russian Foundation for Basic Research, project no. 18-05-00292. The development of simulation methods was supported the Russian Foundation for Basic Research, project no. 18-05-60299. The base salary of G.A. Baydakov, D.A. Sergeev, and Yu.I. Troitskaya was financed within the State Assignment of the Institute of Applied Physics of the Russian Academy of Sciences, project no. 0035-2019-0007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kuznetsova.

Additional information

Translated by O. Pismenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, A.M., Dosaev, A.S., Baydakov, G.A. et al. Adaptation of the Parameterization of the Nonlinear Energy Transfer for Short Fetch Conditions in the WAVEWATCH III Wave Prediction Model. Izv. Atmos. Ocean. Phys. 56, 191–199 (2020). https://doi.org/10.1134/S0001433820020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433820020073

Keywords:

Navigation