Skip to main content
Log in

Anisotropy of the spatial distribution of In(Ga)As quantum dots in In(Ga)As-GaAs multilayer heterostructures studied by X-ray and synchrotron diffraction and transmission electron microscopy

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

High-resolution X-ray and synchrotron (crystal truncation rods) diffraction methods and transmission electron microscopy have been employed to study MBE-grown multilayer In(Ga)As-GaAs heterostructures with arrays of vertically coupled In(Ga)As quantum dots (QDs) in a GaAs matrix. Additional (vertical and lateral) spatial ordering of QDs in perfect crystalline structures, giving rise to undulations of the crystalline planes and quasi-periodic elastic strain, was shown to be essentially anisotropic with respect to crystallographic directions of the [110] type. The anisotropy of the QD formational system of can be accounted for by assuming that the spatial ordering of the QDs and the corrugation of the crystal planes are the initial stages of relaxation of the elastic strain introduced into the system by the QDs. The anisotropic relief of the crystal planes (corrugated growth surface) results from the formation of a system of spatially ordered quantum quasi-wires uniformly filled with QDs. In a multilayer heterostructure with high crystal perfection, the anisotropic relief of the crystal planes is inherited by overlying layers and its amplitude decreases gradually with increasing distance from the source of elastic strain—the superstructure containing In(Ga)As QDs in the given case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982).

    Article  ADS  Google Scholar 

  2. L. Goldstein, F. Glas, J. Y. Marzin, et al., Appl. Phys. Lett. 47, 1099 (1985).

    ADS  Google Scholar 

  3. Y. Arakawa and A. Yariv, IEEE J. Quantum Electron. QE-22, 1887 (1986).

    ADS  Google Scholar 

  4. M. Asada, Y. Miyamoto, and Y. Suematsu, IEEE J. Quantum Electron. QE-22, 1915 (1986).

    Google Scholar 

  5. Semiconductors and Semimetals, Vol. 40: Epitaxial Microstructures, Ed. by A. C. Gossard (Academic, Boston, 1994).

    Google Scholar 

  6. Nanostructures and Quantum Effects, Ed. by H. Sakaki and H. Noge (Springer-Verlag, Berlin, 1994).

    Google Scholar 

  7. N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 32, 385 (1998) [Semiconductors 32, 343 (1998)].

    Google Scholar 

  8. S. V. Zaitsev, N. Yu. Gordeev, Yu. M. Sherniakov, et al., in Proceedings of the 9th International Conference on Superlattices, Microstructures and Microdevices, Liege, 1996; A. E. Zhukov, A. Yu. Egorov, A. R. Kovsh, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 31, 483 (1997) [Semiconductors 31, 411 (1997)].

  9. V. Holy, A. A. Darhuber, G. Bauer, et al., Phys. Rev. B 52, 8348 (1995).

    ADS  Google Scholar 

  10. A. A. Darhuber, E. Koppensteiner, H. Straub, et al., J. Appl. Phys. 76, 7816 (1994).

    Article  ADS  Google Scholar 

  11. A. A. Darhuber, V. Holy, J. Stangl, et al., Appl. Phys. Lett. 70, 955 (1997).

    Article  ADS  Google Scholar 

  12. A. A. Darhuber, P. Schittenhelm, V. Holy, et al., Phys. Rev. B 55, 15652 (1997).

  13. N. Faleev, K. Pavlov, M. Tabuchi, and Y. Takeda, Jpn. J. Appl. Phys. 38, 818 (1999).

    Article  Google Scholar 

  14. N. Faleev, K. Pavlov, M. Tabuchi, and Y. Takeda, Jpn. J. Appl. Phys., Suppl. 38, 277 (1999).

    Google Scholar 

  15. K. Pavlov, N. Faleev, M. Tabuchi, and Y. Takeda, Jpn. J. Appl. Phys., Suppl. 38, 269 (1999).

    Google Scholar 

  16. N. N. Faleev, K. M. Pavlov, V. I. Punegov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 33, 1359 (1999) [Semiconductors 33, 1229 (1999)].

    Google Scholar 

  17. S. Rouvimov, Z. Liliental-Weber, W. Swider, et al., J. Electron. Mater. 27, 427 (1998).

    Google Scholar 

  18. A. R. Kovsh, A. E. Zhukov, A. Yu. Egorov, et al., J. Cryst. Growth 201/202, 1117 (1999).

    Article  Google Scholar 

  19. J. Tersoff, C. Teichert, and M. G. Lagally, Phys. Rev. Lett. 76, 1675 (1996); C. Teichert, M. G. Lagally, L. J. Peticolas, et al., Phys. Rev. B 53, 16334 (1996).

    Article  ADS  Google Scholar 

  20. I. P. Ipatova, V. G. Malyshkin, and V. A. Shchukin, J. Appl. Phys. 74, 7198 (1993).

    Article  ADS  Google Scholar 

  21. V. A. Shchukin, A. I. Borovkov, N. N. Ledentsov, and P. S. Kop’ev, Phys. Rev. B 51, 17767 (1995).

    Google Scholar 

  22. E. Carlino, L. Tapfer, and H. von Kanel, Appl. Phys. Lett. 69, 2546 (1996).

    Article  ADS  Google Scholar 

  23. K. Shiramine, Y. Horisaki, D. Suzuki, et al., Jpn. J. Appl. Phys. 37, 5493 (1998).

    Article  Google Scholar 

  24. V. G. Gruzdov, A. O. Kosogov, and N. N. Faleev, Pis’ma Zh. Tekh. Fiz. 20(14), 1 (1994) [Tech. Phys. Lett. 20, 561 (1994)].

    Google Scholar 

  25. A. Ponchet, A. Rocher, A. Ougazzaden, and A. Mircea, J. Appl. Phys. 75, 7881 (1994); A. Ponchet, A. Le Corre, A. Godefroy, et al., J. Cryst. Growth 153, 71 (1995).

    Article  ADS  Google Scholar 

  26. R. L. Headrick, J.-M. Baribeau, and Y. E. Strausser, Appl. Phys. Lett. 66, 96 (1995).

    Article  ADS  Google Scholar 

  27. T. Shimura and J. Harada, J. Appl. Crystallogr. 26, 151 (1993).

    Article  Google Scholar 

  28. N. Faleev, L. Grave de Peralta, H. Temkin, and V. M. Ustinov, in Abstracts of the X-TOP 2000, Warsaw, 2000}, S4.3

  29. N. Faleev, T. Kawamura, Y. Watanabe, and V. Ustinov, in Abstracts of the X-TOP 2000, Warsaw, 2000}, P2-HG139

  30. L. Dong, J. Schnitker, R. W. Smith, and D. J. Srolovitz, J. Appl. Phys. 83, 217 (1998).

    ADS  Google Scholar 

  31. N. Faleev, R. Stabenow, M. Sinitsyn, et al., Mater. Sci. Forum 166–169, 293 (1994).

    Google Scholar 

  32. A. Ponchet, A. Rocher, J.-Y. Emery, et al., J. Appl. Phys. 77, 1977 (1995).

    Article  ADS  Google Scholar 

  33. Z. H. Ming, Y. L. Soo, S. Huang, et al., Appl. Phys. Lett. 66, 165 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fizika i Tekhnika Poluprovodnikov, Vol. 35, No. 8, 2001, pp. 969–978.

Original Russian Text Copyright © 2001 by Faleev, Musikhin, Suvorova, Egorov, Zhukov, Kovsh, Ustinov, Tabuchi, Takeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faleev, N.N., Musikhin, Y.G., Suvorova, A.A. et al. Anisotropy of the spatial distribution of In(Ga)As quantum dots in In(Ga)As-GaAs multilayer heterostructures studied by X-ray and synchrotron diffraction and transmission electron microscopy. Semiconductors 35, 932–940 (2001). https://doi.org/10.1134/1.1393030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1393030

Keywords

Navigation