Skip to main content
Log in

Charge-state distribution of ions in a vacuum arc discharge plasma in a high magnetic field

  • Gas Discharges, Plasmas
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It is shown that the fraction of multiply charged metal ions generated in a vacuum arc discharge plasma grows substantially in a high magnetic field. This effect was observed for more than 30 different cathode materials. A relation is established between growth of the mean charge of the ions and increases in the burning voltage of the arc. It is demonstrated that the burning voltage of the vacuum arc can be ultimately increased to 160 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of the Seventeenth International Symposium on Discharge and Electrical Insulation in Vacuum. Berkeley, California, 1996. Vol. 1–2.

  2. G. A. Mesyats, Ectons, Parts I-III [in Russian] (UIF “Nauka,” Ekaterinburg, 1993).

    Google Scholar 

  3. V. I. Rakhovskii, Physical Principles of Electric Current Switching in Vacuum [in Russian] (Nauka, Moscow, 1970).

    Google Scholar 

  4. Abstracts of the Fourth All-Russia Conference on Modification of the Properties of Construction Materials by Charged-Particle Beams [in Russian], Tomsk, 1996.

  5. I. G. Brown, IEEE Trans. Plasma Sci. PS-21, 537 (1993).

    Google Scholar 

  6. W. D. Davis and H. C. Miller, J. Appl. Phys. 40, 2212 (1969).

    Google Scholar 

  7. I. G. Brown, B. Feinberg, and J. E. Galvin, J. Appl. Phys. 63, 4889 (1988).

    ADS  Google Scholar 

  8. A. Anders, S. Anders, B. Jüttner, and I. G. Brown, IEEE Trans. Plasma Sci. PS-21, 305 (1993).

    Google Scholar 

  9. P. Spaedtke, H. Emig, B. H. Wolf, E. Oks, Rev. Sci. Instrum. 65, 3113 (1994).

    ADS  Google Scholar 

  10. J. M. Lafferty (Ed.), Vacuum Arcs: Theory and Application (Wiley, New York, 1980; Mir, Moscow, 1982).

    Google Scholar 

  11. S. Anders and A. Anders, J. Phys. D 21, 213 (1988).

    Article  ADS  Google Scholar 

  12. A. Anders, S. Anders, A. Forster, I. G. Brown, Plasma Sources Sci. Technol. 1, 263 (1992).

    Article  ADS  Google Scholar 

  13. V. I. Davydenko, G. I. Dimov, I. I. Morozov, and G. V. Roslyakov, Zh. Tekh. Fiz. 53, 258 (1983) [Sov. Phys. Tech. Phys. 28, 160 (1983)].

    Google Scholar 

  14. B. H. Wolf, H. Emig, P. Spaedtke, and D. Ruck, Rev. Sci. Instrum. 65, 3091 (1994).

    ADS  Google Scholar 

  15. I. G. Brown, Rev. Sci. Instrum. 65, 3061 (1994).

    ADS  Google Scholar 

  16. I. G. Brown, P. Spaedtke, H. Emig et al., Nucl. Instrum. Methods A 295, 12 (1990).

    Article  ADS  Google Scholar 

  17. I. G. Brown, J. E. Galvin, R. A. MacGill, and R. T. Wright, Rev. Sci. Instrum. 58, 1589 (1987).

    ADS  Google Scholar 

  18. E. Oks, P. Spaedtke, H. Emig, and B. H. Wolf, Rev. Sci. Instrum. 65, 3109 (1994).

    ADS  Google Scholar 

  19. I. G. Brown and X. Godechot, IEEE Trans. Plasma Sci. PS-19, 713 (1991).

    Google Scholar 

  20. E. Oks, A. Anders, I. G. Brown, et al., IEEE Trans. Plasma Sci. PS-24, 1174 (1996).

    Google Scholar 

  21. A. Anders, Preprint N LBL 38672. UC-427, University of California, Berkeley, 1996.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Zh. Tekh. Fiz. 68, 39–43 (May 1998)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikolaev, A.G., Oks, E.M. & Yushkov, G.Y. Charge-state distribution of ions in a vacuum arc discharge plasma in a high magnetic field. Tech. Phys. 43, 514–517 (1998). https://doi.org/10.1134/1.1259030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1259030

Keywords

Navigation