Skip to main content
Log in

Strength of optical quality polycrystalline CVD diamond

  • Materials for Quantum Electronics and Fotonics
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

The three-point loading method is used to the measure the fracture strength σ f of polycrystalline CVD diamond plates with thickness in the range of h = 0.06–1.0 mm. Optical quality samples grown in a microwave plasma using CH4-H2 gas mixtures show an inherently nonuniform structure, the crystallite size varying (increasing) by 1–2 orders of magnitude in traversing from the substrate side to growth side. The value of σ f approaches ≈ 2200 MPa for the thinnest film when the fine-grained (substrate) side is under tensile stress, reducing with plate thickness down to ≈ 600 MPa at h ≈1000 μm. The strength is approximately a factor of two lower for the substrate side under tensile stress. In general, the material tested follows Hall-Petch relationship—a stress increase with grain size reduction. The fracture statistics are analyzed using a Weibull distribution, and a Weibull modulus m of 6.4 and 4.5 is found for the growth and substrate side under tension, respectively. Young’s modulus E = 1072 ± 153 GPa for polycrystalline diamond is evaluated from the same tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CVD Diamond for Electronic Devices and Sensors, Sussmann, R.S., Ed., Chichester: Wiley, 2009.

    Google Scholar 

  2. Ral’chenko, V. and Konov, V., CVD Diamonds: Application in Electronic, Elektronika: Nauka, Tekhnologiya, Biznes, 2007, no. 4, pp. 58–67.

  3. Pickles, C.S.J., Madgwick, T.D., Sussmann, R.S., et al., Optical Performance of Chemically Vapor-Deposited Diamond at Infrared Wavelengths, Diamond Relat. Mater., 2000, vol. 9, pp. 916–920.

    Article  CAS  Google Scholar 

  4. Rogalin, V.E., Ashkinazi, E.E., Popovich, A.F., et al., Durability of Diamond Optics in the Beam of Powerful Fibrous Laser, Tez. dokl. XIV Nats. konf. po rostu kristallov, IV Mezhd. konf. “Kristallofizika XXI veka”. T. 2, (Proc. 14th Nat. Conf. on Crystal Growth; Proc. 4th Int. Conf. “Crystallophysics of XXI Century”), Moscow, 2010, pp. 307–308.

  5. Thumm, M., MPACVD-Diamond Windows for High-Power and Long-Pulse Millimeter Wave Transmission, Diamond Relat. Mater., 2001, vol. 10, pp. 1692–1699.

    Article  CAS  Google Scholar 

  6. Hanyu, H., Kamiya, S., Murakami, Y., et al., Dry and Semidry Machining Using Finely Crystallized Diamond Coating Cutting Tools, Surface Coat. Techn., 2003, vol. 174–175, pp. 992–995.

    Article  Google Scholar 

  7. Balmer, R.S., Brandon, J.R., Clewes, S.L., et al., Chemical Vapor Deposition Synthetic Diamond: Materials, Technology and Applications, J. Physics: Cond. Matter, 2009, vol. 21, no. 36, p. 364221.

    Article  CAS  Google Scholar 

  8. Luk’yanov, A.Yu., Ral’chenko, V.G., Khomich, A.V., Serdtsev, E.V., Volkov, P.V., Savel’ev, A.V., and Konov, V.I., Measurement of Optical Absorption in Polycrystalline CVD Diamond Plates by the Phase Photothermal Method at a Wavelength of 10.6 mcm, Quantum Electron., 2008, vol. 38, no. 12, pp. 1171–1178.

    Article  Google Scholar 

  9. Inyushkin, A.V., Taldenkov, A.N., Ral’chenko, V.G., Konov, V.I., Khomich, A.V., and Khmel’nitski, R.A., Thermal Conductivity of Polycrystalline CVD Diamond: Experiment and Theory, J. Exp. Theor. Phys., 2008, vol. 1o7, no. 3, pp. 462–472.

    Article  Google Scholar 

  10. Sumant, A.V., Auciello, O., Carpick, R.W., et al., Ultrananocrystalline and Nanocrystalline Diamond Thin Films for MEMS/NEMS Applications, MRS Bulletin, 2010, vol. 35, no. 4, pp. 281–288.

    Article  CAS  Google Scholar 

  11. Pickles, C.S.J., The Fracture Stress of Chemical Vapor Deposited Diamond, Diamond Relat. Mater., 2002, vol. 11, pp. 1913–1922.

    Article  CAS  Google Scholar 

  12. Klein, C.A., Diamond Windows and Domes: Flexural Strength and Thermal Shock, Diamond Relat. Mater., 2002, vol. 11, no. 2, pp. 218–227.

    Article  CAS  Google Scholar 

  13. Lu, F.X., Jiang, Z., Tang, W.Z., et al., Accurate Measurement of Strength and Fracture Toughness for Miniature-Size Thick Diamond-Film Samples by Three-Point Bending at Constant Loading Rate, Diamond Relat. Mater., 2001, vol. 10, pp. 770–774.

    Article  CAS  Google Scholar 

  14. Yang, J.X., Li, C.M., Lu, F.X., et al., Microstructure and Fracture Strength of Different Grades of Freestanding Diamond Films Deposited by a DC Arc Plasma Jet Process, Surf. Coat. Technol., 2005, vol. 192, nos. 2–3, pp. 171–176.

    Article  CAS  Google Scholar 

  15. Davies, A.R., Field, J.E., and Pickles, C.S.J., Strength of Free-Standing Chemically Vapor-Deposited Diamond Measured by a Range of Techniques, Philos. Mag., 2003, vol. 83, no. 36, pp. 4059–4070.

    Article  CAS  Google Scholar 

  16. Gray, K.J. and Windischmann, H., Free-Standing CVD Diamond Wafers for Thermal Management by DC Arc Jet Technology, Diamond Relat. Mater., 1999, vol. 8, pp. 903–908.

    Article  CAS  Google Scholar 

  17. Sporl, R, Heidinger, R, Kennedy, G.R, et al., Proc. 9th CIMTEC-98—Forum on New Materials, Symp. IV—Diamond Films, Vincenzini, P., Ed., Techna Srl, 1999, pp. 335–342.

  18. Ral’chenko, V.G., Savel’ev, A.V., Popovich, A.F., et al., Two-Layered Diamond-Aluminum Nitride Heat-Removing Dielectric Wafers, Mikroelektronika, 2006, vol. 35, no. 4, pp. 243–248.

    Google Scholar 

  19. Ralchenko, V., Sychov, I., and Vlasov, I., Quality of Diamond Wafers Grown by Microwave Plasma CVD: Effects of Gas Flow Rate, Diamond Relat. Mater., 1999, vol. 8, pp. 189–193.

    Article  CAS  Google Scholar 

  20. Vlasov, I.I., Ralchenko, V.G., Obraztsova, E.D., et al., Stress Mapping of Chemical-Vapor-Deposited Diamond Film Surface by Micro-Raman Spectroscopy, Appl. Phys. Lett., 1997, vol. 71, no. 13, pp. 1789–1791.

    Article  CAS  Google Scholar 

  21. Fodchuk, I.M., Tkach, V.M., Ralchenko, V.G., et al., Distribution in Angular Mismatch between Crystallites in Diamond Films Grown in Microwave Plasma, Diamond Relat. Mater., 2010, vol. 19, pp. 409–412.

    Article  CAS  Google Scholar 

  22. Wachtman, J.B., Mechanical Properties of Ceramics, New York: Wiley, 1996.

    Google Scholar 

  23. Burton, N.C., Steeds, J.W., Meaden, G.M., et al., Strain and Microstructure Variation in Grains of CVD Diamond Film, Diamond Relat. Mater., 1995, vol. 4, pp. 1222–1234.

    Article  CAS  Google Scholar 

  24. Espinosa, H.D., Peng, B., Prorok, B.C., et al., Fracture Strength of Ultrananocrystalline Diamond Thin Films—Identification of Weibull Parameters, J. Appl. Phys., 2003, vol. 94, no. 9, pp. 6076–6084.

    Article  CAS  Google Scholar 

  25. Ralchenko, V., Nistor, L., Pleuler, E., et al., Structure and Properties of High-Temperature Annealed CVD Diamond, Diamond Relat. Mater., 2003, vol. 12, pp. 1964–1970.

    Article  CAS  Google Scholar 

  26. Klein, C.A. and Cardinale, G.F., Young’s Modulus and Poisson’s Ratio of CVD Diamond, Diamond Relat. Mater., 1993, vol. 2, nos. 5–7, pp. 918–923.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.G. Ralchenko, E. Pleiler, D.N. Sovyk, V.I. Konov, 2011, published in Perspektivnye Materialy, 2011, No. 3, pp. 33–39.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralchenko, V.G., Pleiler, E., Sovyk, D.N. et al. Strength of optical quality polycrystalline CVD diamond. Inorg. Mater. Appl. Res. 2, 439–444 (2011). https://doi.org/10.1134/S2075113311050273

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113311050273

Keywords

Navigation