Skip to main content
Log in

Chemical modification of the surface of highly dispersed metal salt crystals

  • Molecular and Supramolecular Structures at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Approaches to chemical modification of surfaces of metal salt crystals, which until recently are not considered objects for surface modification, are collected and analyzed. Possibilities of postsynthetic modification and modification in situ during synthesis of metal salt nanoparticles are discussed. Data for structures of the surface complexes forming upon the interaction of modifiers (organic molecules) and ions on a particle surface and the stability and properties of such complexes are given. Areas of and prospects for practical application of different surface-modified metal salts are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shubov, L.Ya., Ivankov, S.I., and Shcheglova, N.K., Flotatsionnye reagenty v protsessakh obogashcheniya mineral’nogo syr’ya: Spravochnik. V 2-kh kn. (Flotation Reagents in Enrichment of Mineral Raw Materials: Handbook. In Two Books), Kondrat’eva, L.V., Ed., Moscow: Nedra, 1990, vol. 2, p. 263.

  2. Berger, G.S., Flotiruemost’ mineralov (Flotability of Minerals), Moscow: Gos. nauchno-tekhnicheskoe izdvo literatury po gornomu delu, 1962, p. 264.

    Google Scholar 

  3. Li, C., Yang, J., Yang, P., et al., Chem. Mater., 2008, vol. 20, p. 4317.

    Article  Google Scholar 

  4. Evanics, F., Diamente, P.R., van Veggel, F.C.J.M., et al., Chem. Mater., 2006, vol. 18, p. 2499.

    Article  Google Scholar 

  5. Di, W., Willinger, M.-G., Ferreira, R.A.S., et al., J. Phys. Chem. C, 2008, vol. 112, p. 18815.

    Article  Google Scholar 

  6. Cross, A.M., May, P.S., van Veggel, F.C.J.M., et al., J. Phys. Chem. C, 2010, vol. 114, p. 14740.

    Article  Google Scholar 

  7. Dong, C., Raudsepp, M., and van Veggel, F.C.J.M., J. Phys. Chem. C, 2009, vol. 113, p. 472.

    Article  Google Scholar 

  8. Rocha, U., Silva, C.J., Silva, W.F., et al., ACS Nano, 2013, vol. 7, p. 1188.

    Article  Google Scholar 

  9. Cheung, E.N.M., Alvares, R.D.A., Oakden, W., et al., Chem. Mater., 2010, vol. 22, p. 4728.

    Article  Google Scholar 

  10. Nuñez, N.O., Liviano, S.R., and Ocaa, M., J. Colloid Interface Sci., 2010, vol. 349, p. 484.

    Article  Google Scholar 

  11. Li, J., Hao, Zh., Zhang, X., et al., J. Colloid Interface Sci., 2013, vol. 392, p. 206.

    Article  Google Scholar 

  12. Wang, L., Zhang, M., Wang, X., et al., Mater. Res. Bull., 2008, vol. 43, p. 2220.

    Article  Google Scholar 

  13. Qu, Y., Yu, Y., Kong, X., et al., Mater. Lett., 2009, vol. 63, p. 1285.

    Article  Google Scholar 

  14. Hu, Z. and Deng, Y., Ind. Eng. Chem. Res., 2010, vol. 49, p. 5625.

    Article  Google Scholar 

  15. Johnson, N.J.J., Oakden, W., Stanisz, G.J., et al., Chem. Mater., 2011, vol. 23, p. 3714.

    Article  Google Scholar 

  16. Pichaandi, J., Boyer, J.-Ch., Delaney, K.R., et al., J. Phys. Chem. C, 2011, vol. 115, p. 19054.

    Article  Google Scholar 

  17. Dong, C., Korinek, A., Blasiak, B., et al., Chem. Mater., 2012, vol. 24, p. 1297.

    Article  Google Scholar 

  18. Li, X., Gai, Sh., Li, Ch., et al., Inorg. Chem., 2012, vol. 51, p. 3963.

    Article  Google Scholar 

  19. Jiang, G., Pichaandi, J., Johnson, N.J.J., et al., Langmuir, 2012, vol. 28, p. 3239.

    Article  Google Scholar 

  20. Deepika, Hait, S.K., Christopher, J., et al., Powder Technol., 2013, vol. 235, p. 581.

    Article  Google Scholar 

  21. Ma, X., Liu, Y., Yu, Y., et al., J. Appl. Polym. Sci., 2008, vol. 108, p. 1421.

    Article  Google Scholar 

  22. Wang, Y., Qin, W., Zhang, J., et al., J. Rare Earths, 2008, vol. 26, p. 40.

    Article  Google Scholar 

  23. Chang, Sh.-J., Liao, W.-Sh., Ciou, C.-J., et al., J. Colloid Interface Sci., 2009, vol. 329, p. 300.

    Article  Google Scholar 

  24. Wang, Ch., Piao, Ch., Zhai, X., et al., Powder Technol., 2010, vol. 198, p. 131.

    Article  Google Scholar 

  25. Zhang, H., Zeng, X., Gao, Y., et al., Ind. Eng. Chem. Res., 2011, vol. 50, p. 3089.

    Article  Google Scholar 

  26. Kokuoz, B., Kucera, C., DiMaio, J.R., et al., Opt. Mater., 2009, vol. 31, p. 1327.

    Article  Google Scholar 

  27. Bala, H., Fu, W., Guo, Y., et al., Colloids Surf., A, 2006, vol. 274, p. 71.

    Article  Google Scholar 

  28. Stouwdam, J.W. and van Veggel, F.C.J.M., Langmuir, 2004, vol. 20, p. 11763.

    Article  Google Scholar 

  29. Diamente, P.R., Burke, R.D., and van Veggel, F.C.J.M., Langmuir, 2006, vol. 22, p. 1782.

    Article  Google Scholar 

  30. Sheng, Y., Zhou, B., Zhao, J., et al., J. Colloid Interface Sci., 2004, vol. 272, p. 326.

    Article  Google Scholar 

  31. Lo, A.Y.H., Sudarsan, V., Sivakumar, S., et al., J. Am. Chem. Soc., 2007, vol. 129, p. 4687.

    Article  Google Scholar 

  32. Stouwdam, J.W., Raudsepp, M., and van Veggel, F.C.J.M., Langmuir, 2005, vol. 21, p. 7003.

    Article  Google Scholar 

  33. Aissa, A., Agougui, H., and Debbabi, M., Appl. Surf. Sci., 2011, vol. 257, p. 9002.

    Article  Google Scholar 

  34. Safronikhin, A., Ehrlich, H., Shcherba, T., and Lisichkin, G., Colloids Surf., A, 2011, vol. 377, p. 367.

    Article  Google Scholar 

  35. Safronikhin, A.V., Ehrlich, H.V., Shcherba, T.N., and Lisichkin, G.V., Russ. Chem. Bull., Int. Ed., 2011, vol. 60, no. 8, p. 1576.

    Article  Google Scholar 

  36. Mingalyov, P.G., Kolyagin, Yu.G., and Lisichkin, G.V., Colloid J., 2011, vol. 73, no. 1, p. 83.

    Article  Google Scholar 

  37. Mingalev, P.G., Kolyagin, Yu.G., and Lisichkin, G.V., Colloid J., 2012, vol. 74, no. 4, p. 495.

    Article  Google Scholar 

  38. Choi, H.W., Lee, H.J., Kim, K.J., et al., J. Colloid Interface Sci., 2006, vol. 304, p. 277.

    Article  Google Scholar 

  39. Mosby, B.M., Diaz, A., Bakhmutov, V., et al., ACS Appl. Mater. Interfaces, 2014, vol. 6, p. 585.

    Article  Google Scholar 

  40. Kong, D.Y., Wang, Z.L., Lin, C.K., et al., Nanotecnology, 2007, vol. 18, p. 075601.

    Article  Google Scholar 

  41. Morel, F., Bounor-Legare, V., Espuche, E., et al., Eur. Polym. J., 2012, vol. 48, p. 919.

    Article  Google Scholar 

  42. Mi, C., Gao, H., Li, F., et al., Colloids Surf., A, 2012, vol. 395, p. 152.

    Article  Google Scholar 

  43. Liu, Y., Ai, K., and Lu, L., Acc. Chem. Res., 2012, vol. 45, p. 1817.

    Article  Google Scholar 

  44. Ma, L., Chen, W.-X., Zheng, Y.-F., et al., Mater. Res. Bull., 2008, vol. 43, p. 2840.

    Article  Google Scholar 

  45. Dong, H., Liu, Y., Yang, P., et al., Solid State Sci., 2010, vol. 12, p. 1652.

    Article  Google Scholar 

  46. Wang, Ch., Liu, Y., Bala, H., et al., Colloids Surf., A, 2007, vol. 297, p. 179.

    Article  Google Scholar 

  47. Boyer, J.-Ch., Manseau, M.-P., Murray, J.I., et al., Langmuir, 2010, vol. 26, p. 1157.

    Article  Google Scholar 

  48. Das, G.K., Johnson, N.J.J., Cramen, J., et al., J. Phys. Chem. Lett., 2012, vol. 3, p. 524.

    Article  Google Scholar 

  49. Safronikhin, A., Shcherba, T., Ehrlich, H., and Lisichkin, G., Appl. Surf. Sci., 2009, vol. 255, p. 7990.

    Article  Google Scholar 

  50. Dumont, M.F., Baligand, C., Li, Y., et al., Bioconjugate Chem., 2012, vol. 23, p. 951.

    Article  Google Scholar 

  51. Ehrlich, H., Shcherba, T., Zhilenko, M., and Lisichkin, G., Russ. J. Gen. Chem., 2010, vol. 80, p. 939.

    Google Scholar 

  52. Ehrlich, H., Shcherba, T., Zhilenko, M., and Lisichkin, G., Mater. Lett., 2011, vol. 65, p. 107.

    Article  Google Scholar 

  53. Zhilenko, M.P., Lupandina, K.V., Ehrlich, H.V., and Lisichkin, G., Russ. Chem. Bull., Int. Ed., 2010, vol. 59, p. 1307.

    Article  Google Scholar 

  54. Ehrlich, H.V., Shcherba, T.N., Zhilenko, M.P., and Lisichkin, G.V., Russ. Chem. Bull., Int. Ed., 2012, vol. 61, p. 1705.

    Article  Google Scholar 

  55. Safronikhin, A.V., Ehrlich, H.V., and Lisichkin, G.V., Russ. J. Gen. Chem., 2011, vol. 81, p. 277.

    Article  Google Scholar 

  56. Tavasoli, E., Guo, Y., Kunal, P., et al., Chem. Mater., 2012, vol. 24, p. 4231.

    Article  Google Scholar 

  57. Yao, Ch. and Tong, Y., TrAC, Trends Anal. Chem., 2012, vol. 39, p. 60.

    Article  Google Scholar 

  58. Hughes, B.K., Ruddy, D.A., Blackburn, J.L., et al., ACS Nano, 2012, vol. 6, no. 6, p. 5498.

    Article  Google Scholar 

  59. Dai, Y., Yang, D., Ma, P., et al., Biomaterials, 2012, vol. 33, p. 8704.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Safronikhin.

Additional information

Original Russian Text © A.V. Safronikhin, H.V. Ehrlich, G.V. Lisichkin, 2014, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2014, Vol. 50, No. 5, pp. 473–482.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safronikhin, A.V., Ehrlich, H.V. & Lisichkin, G.V. Chemical modification of the surface of highly dispersed metal salt crystals. Prot Met Phys Chem Surf 50, 578–586 (2014). https://doi.org/10.1134/S2070205114050141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114050141

Keywords

Navigation