Skip to main content
Log in

Micro- and nanocomposite Ti-Al-N/Ni-Cr-B-Si-Fe-based protective coatings: Structure and properties

  • Surface, Electron and Ion Emission
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A new type of nanocomposite Ti-Al-N/Ni-Cr-B-Si-Fe-based coatings 70–90 μm thick produced by combined magnetron sputtering and a plasma detonation technology is created and studied. Phases Ti3AlN + Ti3Al2N2 and the phases caused by the interaction of plasma with a thick Al3Ti + Ni3Ti coating are detected in the coatings. The TiAlN phase has a grain size of 18–24 nm, and other phases has a grain size of 35–90 nm. The elastic modulus of the Ti-Al-N coating is E = 342 ± 1 GPa and its average hardness is H = 20.8 ± 1.8 GPa. The corrosion rate of this coating is very low, 4.8 μg/year, which is about three orders of magnitude lower than that of stainless steel (substrate). Wear tests performed according to the cylinder-surface scheme demonstrate high wear resistance and high adhesion between the thick and thin coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nanostructured Coating, Ed. by A. Gavaleiro and J. T. De Hosson (Springer, Berlin, 2006).

    Google Scholar 

  2. Nanostructured Thin Films and Nanodispersion Strengthened Coatings, Ed. by A. A. Voevodin, D. V. Shtansky, E. A. Levashov, and J. J. Moore (Academic, Dordrecht, 2004).

    Google Scholar 

  3. E. A. Levashov and D. V. Shtanskii, Usp. Khim. 76, 501 (2007).

    Google Scholar 

  4. E. N. Reshetnyak and V. E. Strel’nitskii, in Proceedings of the Kharkov Nanotechnology Assembly, Kharkov, 2007, Vol. 1, pp. 6–16.

  5. D. V. Shtansky, M. I. Petrzhik, I. A. Bashkova, et al., Fiz. Tverd. Tela (St. Petersburg) 48, 1231 (2006) [Phys. Solid State 48, 1301 (2006)].

    Google Scholar 

  6. D. G. Morris, in Material Science Foundation: Trans. Tech. Publ. LVD, 1998, Vol. 2, pp. 1–84.

  7. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  8. N. I. Noskova and R. R. Mulyukov, Submicrocrystalline and Nanocrystalline Metals and Alloys (UrO RAN, Yekaterinburg, 2003) [in Russian].

    Google Scholar 

  9. S. Veprek, J. Vac. Sci. Technol. A 17, 2401 (1999).

    Article  ADS  Google Scholar 

  10. R. A. Andrievskii and I. I. Spivak, Strength of Refractory Compounds and Materials Based on Them: A Handbook (Metallurgiya, Chelyabinsk, 1983) [in Russian].

    Google Scholar 

  11. V. M. Beresnev, A. D. Pogrebnyak, N. A. Azarenkov, et al., Usp. Fiz. Metall. 8(3), 171 (2007).

    Google Scholar 

  12. V. M. Beresnev, A. D. Pogrebnyak, N. A. Azarenkov, et al., Fiz. Inzh. Poverkh., Nos. 1–2, 4 (2007).

  13. K. K. Kadyrzhanov, F. F. Komarov, A. D. Pogrebnyak, et al., Ion-Beam and Ion-Plasma Treatment of Materials (MSU, Moscow, 2005) [in Russian].

    Google Scholar 

  14. A. D. Pogrebnyak and Yu. N. Tyurin, Usp. Fiz. Nauk 175, 517 (2005) [Phys. Usp. 48, 487 (2005)].

    Article  Google Scholar 

  15. A. D. Pogrebnyak, V. V. Vasilyuk, V.V. Alontseva, et al., Trenie Iznos 25, 71 (2004).

    Google Scholar 

  16. A. D. Pogrebnyak, Sh. M. Ruzimov, V. V. Ponaryadov, et al., Pis’ma Zh. Tekh. Fiz. 30(4), 79 (2004) [Tech. Phys. Lett 30, 164 (2004)].

    Google Scholar 

  17. A. D. Pogrebnjak, Sh. Ruzimov, D. L. Alontseva, et al., Vacuum 81, 1241 (2007).

    Article  Google Scholar 

  18. N. A. Azarenkov, V. M. Beresnev, and A. D. Pogrebnyak, Structure and Properties of Protective Coatings and Modified Layers of Materials (Khar’kovsk, Nats. Univ., Khar’kov, 2007) [in Russian].

    Google Scholar 

  19. S. N. Dub and N. V. Novikov, Sverkhtverd. Mater., No. 6, 16 (2004).

  20. W. C. Oliver G. M. Pharr, J. Mater. Res. 7, 1364 (1992).

    Google Scholar 

  21. L. C. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (North Holland, Amsterdam, 1986; Mir, Moscow, 1989).

    Google Scholar 

  22. T. Y. Tsui, G. M. Pharr, W. C. Oliver, C. S. Bhatia, R. L. White, S. Anders, and A. Anders, Brown Mater. Res. Soc. Symp. Proc. 386, 447 (1996).

    Google Scholar 

  23. A. Leyland and A. Matthews, Wear 246, 1 (2000).

    Article  Google Scholar 

  24. A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, Usp. Fiz. Nauk 179, 35 (2009) [Phys. Usp. 52, 29 (2009)].

    Article  Google Scholar 

  25. A. D. Pogrebnjak, M. M. Danilionok, V. V. Uglov, et al., Vacuum 83, 235 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Pogrebnyak.

Additional information

Original Russian Text © A.D. Pogrebnyak, A.A. Drobyshevskaya, V.M. Beresnev, M.K. Kylyshkanov, T.V. Kirik, S.N. Dub, F.F. Komarov, A.P. Shipilenko, Yu.Zh. Tuleushev, 2011, published in Zhurnal Tekhnicheskoĭ Fiziki, 2011, Vol. 81, No. 7, pp. 124–131.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pogrebnyak, A.D., Drobyshevskaya, A.A., Beresnev, V.M. et al. Micro- and nanocomposite Ti-Al-N/Ni-Cr-B-Si-Fe-based protective coatings: Structure and properties. Tech. Phys. 56, 1023–1030 (2011). https://doi.org/10.1134/S1063784211070188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784211070188

Keywords

Navigation