Skip to main content
Log in

Dominant influence of the compression effect of a magnetic flux in the intergranular medium of a granular high-temperature superconductor on dissipation processes in an external magnetic field

  • Superconductivity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Experiments have been presented that demonstrate the effect of the compression of a magnetic flux in grain boundaries of a granular high-temperature superconductor in an external magnetic field on the dissipation processes. The compression of the magnetic flux is associated with the diamagnetic behavior of superconducting grains and the existence of a Josephson medium in grain boundaries. Under these conditions, grain boundaries are in an effective magnetic field that depends on the magnetic state (magnetization) of the superconducting grains. Based on the analysis of experimental data (dependences of the electrical resistance R and magnetization on the magnetic field H and temperature T, as well as current-voltage characteristics), the conclusion has been drawn that it is the temperature evolution of the effective magnetic field in the intergranular medium which primarily determines the behavior of the dependences R(T) in weak external magnetic fields of no more than ∼103 Oe. This should be taken into account in the interpretation of experiments on the magnetoresistance effect in granular high-temperature superconductors in terms of different theories. The conclusion drawn here also implies a significant correction of the previously obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. B. Sonin, JETP Lett. 47(8), 496 (1988).

    ADS  Google Scholar 

  2. J. Jung, A. K. Mohamed, S. C. Cheng, and J. P. Frank, Phys. Rev. B: Condens. Matter 42(10), 6181 (1990).

    Article  ADS  Google Scholar 

  3. B. Andrzejewski, E. Guilmeau, and Ch. Simon, Supercond. Sci. Technol. 14, 904 (2001).

    Article  ADS  Google Scholar 

  4. M. A. Dubson, S. T. Herbert, J. J. Calabrese, D. C. Harris, B. R. Patton, and J. C. Garland, Phys. Rev. Lett. 60(11), 1061 (1988).

    Article  ADS  Google Scholar 

  5. J. D. Hettinger, A. G. Swanson, J. S. Brooks, Y. Z. Huang, L. Q. Chen, and Zhong-Xian Zhao, Supercond. Sci. Technol. 1, 349 (1989).

    Article  ADS  Google Scholar 

  6. H. S. Gamchi, G. J. Russel, and K. N. R. Taylor, Phys. Rev. B: Condens. Matter 50(17), 12950 (1994).

    Article  ADS  Google Scholar 

  7. C. Gaffney, H. Petersen, and R. Bednar, Phys. Rev. B: Condens. Matter 48(5), 3388 (1993).

    Article  ADS  Google Scholar 

  8. A. C. Wright, K. Zhang, and A. Erbil, Phys. Rev. B: Condens. Matter 44(2), 863 (1991).

    Article  ADS  Google Scholar 

  9. A. C. Wright, T. K. Xia, and A. Erbil, Phys. Rev. B: Condens. Matter 45(2), 5607 (1992).

    Article  ADS  Google Scholar 

  10. C. A. M. dos Santos, M. S. da Luz, and A. J. S. Machado, Physica C (Amsterdam) 391, 345 (2003).

    Article  ADS  Google Scholar 

  11. D. Daghero, P. Mazzetti, A. Stepanesku, P. Tura, and A. Masoero, Phys. Rev. B: Condens. Matter 66, 184514 (2002).

    Article  ADS  Google Scholar 

  12. L. Urba, C. Acha, and V. Bekeris, Physica C (Amsterdam) 279, 92 (1997).

    Google Scholar 

  13. M. R. Mohammadizadeh and M. Akhavan, Supercond. Sci. Technol. 16, 234 (2003).

    Google Scholar 

  14. H. Shakeripour and M. Akhavan, Supercond. Sci. Technol. 14, 234 (2001).

    Article  ADS  Google Scholar 

  15. D. A. Balaev, K. A. Shaihutdinov, S. I. Popkov, D. M. Gokhfeld, and M. I. Petrov, Supercond. Sci. Technol. 17, 175 (2004).

    Article  ADS  Google Scholar 

  16. D. A. Balaev, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 48(5), 826 (2006).

    Article  ADS  Google Scholar 

  17. D. A. Balaev, D. M. Gokhfeld, A. A. Dubrovskii, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, JETP 105(6), 1174 (2007).

    Article  ADS  Google Scholar 

  18. D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfeld, Yu. S. Gokhfeld, and M. I. Petrov, JETP 108(2), 241 (2009).

    Article  ADS  Google Scholar 

  19. D. A. Balaev, A. A. Bykov, S. V. Semenov, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53(5), 922 (2011).

    Article  ADS  Google Scholar 

  20. T. K. Worthington, E. Olsson, T. M. Nichols, T. M. Shaw, and D. R. Clarke, Phys. Rev. B: Condens. Matter 43, 10538 (1991).

    Article  ADS  Google Scholar 

  21. W. M. Tieran, R. Joshi, and R. B. Hallock, Phys. Rev. B: Condens. Matter 48, 3423 (1993).

    Article  ADS  Google Scholar 

  22. Y. Zhao, X. B. Zuge, J. M. Xu, and L. Cao, Phys. Rev. B: Condens. Matter 49, 6985 (1994).

    Article  ADS  Google Scholar 

  23. R. J. Joshi, R. B. Hallock, and J. A. Taylor, Phys. Rev. B: Condens. Matter 55, 9107 (1997).

    Article  ADS  Google Scholar 

  24. R. J. Soulen, T. L. Francavilla, W. W. Fuller-Mora, M. M. Miller, C. H. Joshi, W. L. Carter, A. J. Rodenbush, M. D. Manlief, and D. Aized, Phys. Rev. B: Condens. Matter 50, 478 (1994).

    Article  ADS  Google Scholar 

  25. D. H. Liebenberg, R. J. Soulen, T. L. Francavilla, W. W. Fuller-Mora, P. C. McIntyre, and M. J. Cima, Phys. Rev. B: Condens. Matter 51, 11838 (1995).

    Article  ADS  Google Scholar 

  26. R. J. Soulen, T. L. Francavilla, A. R. Drews, L. Toth, M. S. Osofsly, W. L. Lechter, and E. F. Skelton, Phys. Rev. B: Condens. Matter 51, 1393 (1995).

    Article  ADS  Google Scholar 

  27. N. D. Kuz’michev, Phys. Solid State 43(11), 2012 (2001).

    Article  ADS  Google Scholar 

  28. M. A. Vasyutin, Tech. Phys. Lett. 37(8), 743 (2011).

    Article  ADS  Google Scholar 

  29. K. Yu. Terent’ev, D. M. Gokhfel’d, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 53(12), 2409 (2011).

    Article  ADS  Google Scholar 

  30. P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).

    Article  ADS  Google Scholar 

  31. V. Ambegaokar and B. I. Halperin, Phys. Rev. Lett. 22, 1364 (1969).

    Article  ADS  Google Scholar 

  32. M. P. A. Fisher, Phys. Rev. Lett. 62, 1415 (1989).

    Article  ADS  Google Scholar 

  33. Yu. I. Kuzmin, Phys. Rev. B: Condens. Matter 64, 094519 (2001).

    Article  ADS  Google Scholar 

  34. Yu. I. Kuzmin, Phys. Solid State 43(7), 1199 (2001).

    Article  ADS  Google Scholar 

  35. G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, Rev. Mod. Phys. 66(4), 1125 (1994).

    Article  ADS  Google Scholar 

  36. Y. J. Quian, Z. M. Tang, K. Y. Chen, B. Zhou, J. W. Qui, B. C. Miao, and Y. M. Cai, Phys. Rev. B: Condens. Matter 39, 4701 (1989).

    Article  ADS  Google Scholar 

  37. M. T. Gonzalez, S. R. Curras, J. Maza, and F. Vidal, Phys. Rev. B: Condens. Matter 63, 224511 (2001).

    Article  ADS  Google Scholar 

  38. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Phys. Solid State 48(8), 1455 (2006).

    Article  ADS  Google Scholar 

  39. T. V. Sukhareva and V. A. Finkel, Phys. Solid State 53(5), 914 (2011).

    Article  ADS  Google Scholar 

  40. T. V. Sukhareva and V. A. Finkel, Phys. Solid State 50(6), 1001 (2008).

    Article  ADS  Google Scholar 

  41. K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, Phys. Solid State 51(6), 1105 (2009).

    Article  ADS  Google Scholar 

  42. D. A. Balaev, S. I. Popkov, E. I. Sabitova, S. V. Semenov, K. A. Shaykhutdinov, A. V. Shabanov, and M. I. Petrov, J. Appl. Phys. 110, 093918 (2011).

    Article  ADS  Google Scholar 

  43. D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, D. M. Gokhfeld, S. V. Semenov, K. A. Shaikhutdinov, and M. I. Petrov, Phys. Solid State 54(11), 2155 (2012).

    Article  ADS  Google Scholar 

  44. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Semenov.

Additional information

Original Russian Text © D.A. Balaev, S.V. Semenov, M.I. Petrov, 2013, published in Fizika Tverdogo Tela, 2013, Vol. 55, No. 12, pp. 2305–2312.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaev, D.A., Semenov, S.V. & Petrov, M.I. Dominant influence of the compression effect of a magnetic flux in the intergranular medium of a granular high-temperature superconductor on dissipation processes in an external magnetic field. Phys. Solid State 55, 2422–2430 (2013). https://doi.org/10.1134/S1063783413120044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783413120044

Keywords

Navigation