Skip to main content
Log in

Structural disorder in the paraelectric phase of the Fe3B7O13Br boracite

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A structural model of the cubic paraelectric phase of a Fe3B7O13Br crystal belonging to the boracite family has been developed using the data obtained by single-crystal X-ray diffraction with due regard for the results of extended X-ray absorption fine structure (EXAFS) spectroscopy. It has been shown that the best agreement between the data obtained by these two methods is achieved within a model assuming a disorder in the arrangement of both the Fe and Br atoms and a high degree of correlation of their displacements. It has been found that, during the phase transition from the rhombohedral ferroelectric phase to the cubic paraelectric phase, no significant transformation of the structure is observed on a local level. In this case, a change in the macroscopic symmetry occurs predominantly as a result of the variation in the set of possible spatial orientations of stable structural fragments, which is characteristic of order-disorder phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ravel, E. A. Stern, R. I. Vedrinskii, and V. Kraizman, Ferroelectrics 206–207, 407 (1998).

    Article  Google Scholar 

  2. V. A. Shuvaeva, K. Yanagi, K. Yagi, K. Sakaue, and H. Terauchi, Solid State Commun. 106, 335 (1998).

    Article  ADS  Google Scholar 

  3. B. Ravel, N. Sicron, Y. Yacoby, E. A. Stern, F. Dogan, and J. J. Rehr, Ferroelectrics 164, 265 (1995).

    Article  Google Scholar 

  4. K. A. Muller and W. Berlinger, Phys. Rev. B: Condens. Matter 34, 6130 (1986).

    Article  ADS  Google Scholar 

  5. B. Zalar, V. Laguta, J. Seliger, R. Blinc, A. Lebar, and M. Itoh, Phys. Rev. B: Condens. Matter 71, 064107 (2005).

    Article  ADS  Google Scholar 

  6. A. N. Chabanyuk, V. I. Torgashev, and Yu. I. Yuzyuk, Izv. Akad. Nauk, Ser. Fiz. 72(8), 1176 (2008) [Bull. Russ. Acad. Sci.: Phys. 72 (8), 1110 (2008)].

    Google Scholar 

  7. Y. Girshberg, J. Phys.: Condens. Matter 13, 8817 (2001).

    Article  ADS  Google Scholar 

  8. M. Sepliarsky, M. G. Stachiotti, R. L. Migoni, and C. O. Rodriguez, Ferroelectrics 234, 9 (1999).

    Article  Google Scholar 

  9. H. Krakauer, R. Yu, C.-Z. Wang, K. M. Rabe, and U. V. Waghmare, J. Phys.: Condens. Matter 11, 3779 (1999).

    Article  ADS  Google Scholar 

  10. R. J. Nelmes and F. R. Thornley, J. Phys. C: Solid State Phys. 7, 3855 (1974).

    Article  ADS  Google Scholar 

  11. R. J. Nelmes and F. R. Thornley, J. Phys C: Solid State Phys. 9, 665 (1976).

    Article  ADS  Google Scholar 

  12. F. Kubel, Ferroelectrics 160, 61 (1994).

    Article  Google Scholar 

  13. G. Berset, W. Depmeier, R. Boutellier, and H. Schmid, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 41, 1694 (1985).

    Article  Google Scholar 

  14. A. Monnier, G. Berset, and H. Schmid, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 43, 1243 (1987).

    Article  Google Scholar 

  15. S. Sueno, J. R. Clark, J. J. Papike, and J. A. Konnert, Am. Mineral. 58, 691 (1973).

    Google Scholar 

  16. P. Felix, M. Lambert, R. Comes, and H. Schmid, Ferroelectrics 7, 131 (1974).

    Article  Google Scholar 

  17. T. I. Nedoseykina, V. A. Shuvaeva, I. V. Pirog, A. T. Shuvaev, K. Yagi, Y. Azuma, and H. Terauchi, Ferroelectrics 284, 175 (2003).

    Article  Google Scholar 

  18. A. T. Shuvaev, I. V. Pirog, and I. A. Zarubin, Physica B (Amsterdam) 208–209, 627 (1995).

    Google Scholar 

  19. M. N. Iliev, V. G. Hadjiev, M. E. Mendoza, and J. Pacual, Phys. Rev. B: Condens. Matter 76(21), 214112 (2007).

    Article  ADS  Google Scholar 

  20. K. Knorr, L. Peters, B. Winkler, V. Milman, and A. G. Castellanos-Guzman, J. Phys.: Condens. Matter 19, 1 (2007).

    Article  Google Scholar 

  21. H. Schmid and J. M. Trooster, Solid State Commun. 5, 31 (1967).

    Article  ADS  Google Scholar 

  22. V. A. Shuvaeva, K. Lysenko, and M. Yu. Antipin, Kristallografiya (in press) [Crystallogr. Rep. (in press)].

  23. D. Andrica, J.-P. Rivera, S. Gentil, Z.-G. Ye, M. Senthil Kumar, and H. Schmid, Ferroelectrics 204, 73 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Shuvaeva.

Additional information

Original Russian Text © V.A. Shuvaeva, K.A. Lysenko, M.Yu. Antipin, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 4, pp. 682–686.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shuvaeva, V.A., Lysenko, K.A. & Antipin, M.Y. Structural disorder in the paraelectric phase of the Fe3B7O13Br boracite. Phys. Solid State 53, 730–735 (2011). https://doi.org/10.1134/S1063783411040317

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411040317

Keywords

Navigation