Skip to main content
Log in

Molecular beam epitaxy of AlGaAs/Zn(Mn)Se hybrid nanostructures with InAs/AlGaAs quantum dots near the heterovalent interface

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Features of the growth of InAs quantum dots in an Al0.35Ga0.65As matrix by molecular beam epitaxy at different substrate temperatures, deposition rates, and amounts of deposited InAs are studied. The optimum conditions for growing an array of low-density (≤2 × 1010 cm−2) small (height of no more than 4 nm) self-organized quantum dots are determined. The possibility of the formation of optically active InAs quantum dots emitting in the energy range 1.3–1.4 eV at a distance of no more than 10 nm from the coherent heterovalent GaAs/ZnSe interface is demonstrated. It is established that inserting an optically inactive 5-nm GaAs quantum well resonantly coupled with InAs quantum dots into the upper AlGaAs barrier layer enhances the photoluminescence efficiency of the quantum-dot array in hybrid heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787 (1999).

    Article  ADS  Google Scholar 

  2. A. A. Toropov, I. V. Sedova, S. V. Sorokin, Ya. V. Terent’ev, E. L. Ivchenko, and S. V. Ivanov, Phys. Rev. B 71, 195312 (2005).

    Article  ADS  Google Scholar 

  3. F. Liaci, V. Kh. Kaibyshev, A. A. Toropov, Ya. V. Terent’ev, M. S. Mukhin, G. V. Klimko, S. V. Gronin, I. V. Sedova, S. V. Sorokin, and S. V. Ivanov, Phys. Status Solidi C 9, 1790 (2012).

    Article  ADS  Google Scholar 

  4. S. Yu. Verbin, R. V. Cherbunin, T. Auer, D. R. Yakovlev, M. Bayer, I. A. Merkulov, V. Stavarache, D. Reuter, and A. D. Wieck, Phys. Rev. Lett. 98, 107401 (2007).

    Article  ADS  Google Scholar 

  5. P. Asshoff, G. Wüst, A. Merz, D. Litvinov, D. Gerthsen, H. Kalt, and M. Hetterich, Phys. Rev. B 84, 125302 (2011).

    Article  ADS  Google Scholar 

  6. N. A. Cherkashin, M. V. Maksimov, A. G. Makarov, V. A. Shchukin, V. M. Ustinov, N. V. Lukovskaya, Yu. G. Musikhin, G. E. Cirlin, N. A. Bert, Zh. I. Alferov, N. N. Ledentsov, and D. Bimberg, Semiconductors 37, 861 (2003).

    Article  ADS  Google Scholar 

  7. T. Passow, S. Li, P. Fein’augle, T. Vallaitis, J. Leuthold, D. Litvinov, D. Gerthsen, and M. Hetterich, J. Appl. Phys. 102, 073511 (2007).

    Article  ADS  Google Scholar 

  8. Z. M. Wang, Self-Assembled Quantum Dots (Springer, New York, 2008).

    Book  Google Scholar 

  9. A. V. Osipov, S. A. Kukushkin, F. Schmitt, and P. Hess, Phys. Rev. B 64, 205421 (2001).

    Article  ADS  Google Scholar 

  10. V. G. Dubrovskii, G. E. Cirlin, Yu. G. Musikhin, Yu. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, J. Cryst. Growth 267, 47 (2004).

    Article  ADS  Google Scholar 

  11. I. Kamiya, T. Shirasaka, K. Shimomura, and D. M. Tex, J. Cryst. Growth 323, 219 (2011).

    Article  ADS  Google Scholar 

  12. P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Malik, D. Childs, and R. Murray, Phys. Rev. B 62, 10891 (2000).

    Article  ADS  Google Scholar 

  13. R. Songmuang, S. Kiravittaya, M. Sawadsaringkam, S. Panyakeow, and O. G. Schmidt, J. Cryst. Growth 251, 166 (2003).

    Article  ADS  Google Scholar 

  14. A. Convertino, L. Cerri, G. Leo, and S. Viticoli, J. Cryst. Growth 261, 458 (2004).

    Article  ADS  Google Scholar 

  15. B. V. Volovik, A. F. Tsatsul’nikov, N. N. Ledentsov, M. V. Maksimov, A. V. Sakharov, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, I. E. Kozin, M. V. Belousov, and D. Bimberg, Tech. Phys. Lett. 24, 7 (1998).

    Article  Google Scholar 

  16. D. S. Sizov, Yu. B. Samsonenko, G. E. Cirlin, N. K. Polyakov, V. A. Egorov, A. A. Tonkikh, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, Yu. G. Musikhin, A. F. Tsatsul’nikov, V. M. Ustinov, and N. N. Ledentsov, Semiconductors 37, 559 (2003).

    Article  ADS  Google Scholar 

  17. M. Schramboeck, A. M. Andrews, P. Klang, W. Schrenk, G. Hesser, F. Schaffler, and G. Strasser, Superlatt. Microstruct. 44, 411 (2008).

    Article  ADS  Google Scholar 

  18. V. V. Preobrazhenskii, M. A. Putyato, O. P. Pchelyakov, and B. R. Semyagin, J. Cryst. Growth 201–202, 170 (1999).

    Article  Google Scholar 

  19. V. V. Preobrazhenskii, M. A. Putyato, and B. R. Semyagin, Semiconductors 36, 837 (2002).

    Article  ADS  Google Scholar 

  20. F. Patella, F. Arciprete, M. Fanfoni, A. Balzarotti, and E. Placidi, Appl. Phys. Lett. 88, 161903 (2006).

    Article  ADS  Google Scholar 

  21. G. E. Cirlin, N. P. Korneeva, V. N. Demidov, N. K. Polyakov, V. N. Petrov, and N. N. Ledentsov, Semiconductors 31, 1057 (1997).

    Article  ADS  Google Scholar 

  22. A. Frey, U. Bass, S. Mahapatra, C. Schumacher, J. Geurts, and K. Brunner, Phys. Rev. B 82, 195318 (2010).

    Article  ADS  Google Scholar 

  23. I. V. Sedova et al., in Proceedings of the 17th International Conference on MBE (Nara, Japan, 2012), p. 251.

    Google Scholar 

  24. V. A. Sevryuk, P. N. Brunkov, I. V. Shal’nev, A. A. Gutkin, G. V. Klimko, S. V. Gronin, S. V. Sorokin, and S. G. Konnikov, Semiconductors 47, 930 (2013).

    Article  ADS  Google Scholar 

  25. O. P. Pchelyakov, Yu. B. Bolkhovityanov, A. V. Dvurechenskii, and B. Voigtl’ander, Thin Solid Films 367, 75 (2000).

    Article  ADS  Google Scholar 

  26. Yu. G. Musikhin, G. E. Cirlin, V. G. Dubrovskii, Yu. B. Samsonenko, A. A. Tonkikh, N. A. Bert, and V. M. Ustinov, Semiconductors 39, 820 (2005).

    Article  ADS  Google Scholar 

  27. Yu. G. Musikhin, G. E. Cirlin, V. G. Dubrovskii, Yu. B. Samsonenko, A. A. Tonkikh, N. A. Bert, and V. M. Ustinov, Semiconductors 39, 820 (2005).

    Article  ADS  Google Scholar 

  28. W. Ostwald, Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 22, 289 (1897).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Klimko.

Additional information

Original Russian Text © G.V. Klimko, S.V. Sorokin, I.V. Sedova, S.V. Gronin, F. Liaci, V.Kh. Kaibyshev, V.A. Sevryuk, P.N. Brunkov, A.A. Sitnikova, A.A. Toropov, S.V. Ivanov, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 1, pp. 36–43.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimko, G.V., Sorokin, S.V., Sedova, I.V. et al. Molecular beam epitaxy of AlGaAs/Zn(Mn)Se hybrid nanostructures with InAs/AlGaAs quantum dots near the heterovalent interface. Semiconductors 48, 34–41 (2014). https://doi.org/10.1134/S1063782614010163

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614010163

Keywords

Navigation