Skip to main content
Log in

Properties of tungsten oxide thin films formed by ion-plasma and laser deposition methods for MOSiC-based hydrogen sensors

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Thin-film structures based on gas-sensitive tungsten oxide and catalytic platinum are fabricated by room-temperature deposition on a silicon carbide wafer using pulsed laser and ion-plasma methods. Oxide layer annealing in air to 600°C caused the formation of microstructured and nanostructured crystalline states depending on the deposition conditions. Structural differences affect the electrical parameters and the stability of characteristics. The maximum response to hydrogen is detected in the structure fabricated by depositing a low-energy laser-induced flow of tungsten atoms in oxygen. The voltage shift of the currentvoltage curves for 2% H2 in air at 350°C was 4.6 V at a current of ∼10 μA. The grown structures’ metastability caused a significant decrease in the shift after long-term cyclic testing. The most stable shifts of ∼2 V at positive bias on the Pt contact were detected for oxide films deposited by ion-plasma sputtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. O. V. Anisimov, V. I. Gaman, N. K. Maksimova, Yu. P. Naiden, V. A. Novikov, E. Yu. Sevast’yanov, F. V. Rudov, and E. V. Chernikov, Semiconductors 44, 366 (2010).

  2. A. Trinchi, S. Kandasamy, and W. Wlodarski, Sens. Actuat. B 133, 705 (2008).

    Article  Google Scholar 

  3. S. Kandasamy, A. Trinchi, W. Wlodarski, E. Comini, and G. Sberveglieri, Sens. Actuat. B 111–112, 111 (2005).

    Article  Google Scholar 

  4. S. Nakagomi, K. Okuda, and Y. Kokubun, Sens. Actuat. B 96, 364 (2003).

    Article  Google Scholar 

  5. G. Soto, W. De LaCruz, J. A. Díaz, R. Machorro, F. F. Castillón, and M. H. Farías, Appl. Surf. Sci. 218, 281 (2003).

    Google Scholar 

  6. S. Yamamoto, A. Inouye, and M. Yoshikawa, Nucl. Instrum. Methods Phys. Res. B 266, 802 (2008).

    Article  ADS  Google Scholar 

  7. M. Filipescu, S. Orlando, V. Russo, A. Lamperti, A. Purice, A. Moldovan, and M. Dinescu, Appl. Surf. Sci. 253, 8258 (2007).

    Article  ADS  Google Scholar 

  8. R. N. Ghosh, P. Tobias, and B. Golden, Mater. Res. Soc. Symp. 742, K7.5.1 (2003).

    Google Scholar 

  9. V. Yu. Fominskii, R. I. Romanov, A. G. Gnedovets, V. V. Zuev, and M. V. Demin, Semiconductors 44, 537 (2010).

    Article  Google Scholar 

  10. N. F. Kovtonyuk and Yu. A. Kontsevoi, Measurement of Parameters of Semiconductor Materials (Metallurgiya, Moscow, 1970) [in Russian].

    Google Scholar 

  11. R. I. Romanov, V. V. Zuev, V. Yu. Fominskii, M. V. Demin, and V. V. Grigor’ev, Semiconductors 44, 1192 (2010).

    Article  ADS  Google Scholar 

  12. K. Sauvet, A. Rougier, and L. Sauques, Solar Energy Mater. Solar Cells 92, 209 (2008).

    Article  Google Scholar 

  13. V. N. Nevolin, V. Yu. Fominskii, A. G. Gnedovets, and R. I. Romanov, Fiz. Khim. Obrab. Mater. 2, 46 (2010).

    Google Scholar 

  14. S. J. Hong, H. Jun, P. H. Borse, and J. S. Lee, Int. J. Hydrogen Energy 34, 3234 (2009).

    Article  Google Scholar 

  15. G. E. Pikus, Basics of the Theory of Semiconductor Devices (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Y. Fominski.

Additional information

Original Russian Text © V.Y. Fominski, S.N. Grigoriev, R.I. Romanov, V.V. Zuev, V.V. Grigoriev, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 3, pp. 416–424.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fominski, V.Y., Grigoriev, S.N., Romanov, R.I. et al. Properties of tungsten oxide thin films formed by ion-plasma and laser deposition methods for MOSiC-based hydrogen sensors. Semiconductors 46, 401–409 (2012). https://doi.org/10.1134/S1063782612030098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612030098

Keywords

Navigation