Skip to main content
Log in

Polarization dependences of electroluminescence and absorption of vertically correlated InAs/GaAs QDs

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of experimental studies concerning the optical polarization anisotropy of electroluminescence and absorption spectra of systems with a varied number of tunnel-coupled vertically correlated In(Ga)As/GaAs quantum dots (QDs), built into a double-section laser with equal-length sections, are presented. One such system is a QD superlattice exhibiting the Wannier-Stark effect. The involvement of heavyhole ground states in optical transitions for light polarized both in the plane perpendicular to the growth axis (X-Y) and along the growth direction Z of the structure was observed. The degree of polarization anisotropy depends on the height of vertically correlated QDs and the QD superlattice: the total thickness of all In(Ga)As QD layers and GaAs spacers between the QDs, which is related to the Z component of the wave function of heavy-hole ground states for vertically correlated QDs and for the QD superlattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. V. Keldysh, O. V. Konstantinov, and V. I. Perel’, Sov. Phys. Semicond. 3, 940 (1969).

    Google Scholar 

  2. Zh. I. Alferov, D. Z. Garbuzov, E. P. Morozov, and E. L. Portnoi, Sov. Phys. Semicond. 3, 943 (1969).

    Google Scholar 

  3. D. Akhmedov, N. P. Bezhan, N. A. Portnoi, S. G. Konnikov, V. I. Kuchinskii, V. A. Mishurnyi, and E. L. Portnoi, Pis’ma Zh. Tekh. Fiz. 33, 28 (2007).

    Google Scholar 

  4. E. A. Avrutin, I. E. Chebunina, I. A. Eliachevitch, S. A. Gurevich, M. E. Portnoi, and G. E. Shtengel, Semicond. Sci. Technol. 8, 80 (1993).

    Article  ADS  Google Scholar 

  5. T. Tanaka, J. Singh, Y. Arakawa, and P. Bhattachatya, Appl. Phys. Lett. 62, 756 (1993).

    Article  ADS  Google Scholar 

  6. F. Vouilloz, D. Y. Oberli, M.-A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, Phys. Rev. B 57, 12378 (1998).

    Article  ADS  Google Scholar 

  7. L. Chu, M. Arzberger, A. Zrenner, A. Zrenner, G. Bohm, and G. Abstreiter, Appl. Phys. Lett. 75, 2247 (1999).

    Article  ADS  Google Scholar 

  8. P. Yu, W. Langbein, K. Leosson, J. M. Hvam, N. N. Ledentsov, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, A. F. Tsatsul’nikov, and Yu. G. Musikhin, Phys. Rev. B 60, 16680 (1999).

    Article  ADS  Google Scholar 

  9. C. Cortez, O. Krebs, P. Voisin, and J. M. Gérard, Phys. Rev. B 63, 233306 (2001).

    Article  ADS  Google Scholar 

  10. Yu. I. Mazur, S. Noda, G. G. Tarasov, V. G. Dorogan, G. J. Salamo, O. Bierwagen, W. T. Masselink, E. A. Decuir, Jr., and M. O. Manasreh, J. Appl. Phys. 103, 054314 (2008).

    Article  ADS  Google Scholar 

  11. K. F. Karlsson, V. Troncale, D. Y. Oberli, A. Malko, E. Pelucchi, A. Rudra, and E. Kapon, Appl. Phys. Lett. 89, 251113 (2006).

    Article  ADS  Google Scholar 

  12. M. Schardt, A. Winkler, G. Rurimo, M. Hanson, D. Driscoll, S. Quabis, S. Malzer, G. Leuchs, G. H. Döhler, and A. C. Gossard, Physica E 32, 241 (2006).

    Article  ADS  Google Scholar 

  13. Henini, M. S. Sanguinetti, S. C. Fortina, E. Grilli, M. Guzzi, G. Panzarini, L. C. Andreani, M. D. Upward, P. Moriarty, P. H. Beton, and L. Eaves, Phys. Rev. B 57, R6815 (1998).

    Article  ADS  Google Scholar 

  14. A. M. Adawi, E. A. Zibik, L. R. Wilson, A. Lemaître, W. D. Sheng, J. W. Cockburn, M. S. Skolnick, J. P. Leburton, M. Hopkinson, G. Hill, L. Liew, and A. G. Cullis, Phys. Status Solidi B 238, 341 (2003).

    Article  ADS  Google Scholar 

  15. K. Y. Chuang, C. Y. Chen, T. E. Tzeng, J. Y. Feng, and T. S. Lay, Physica E 40, 1882 (2008).

    Article  ADS  Google Scholar 

  16. Tomoya Inoue, Masaki Asada, Nami Yasuoka, Osamu Kojima, Takashi Kita, and Osamu Wada, J. Appl. Phys. 96, 211906 (2010).

    Google Scholar 

  17. Toshio Saito, Hiroji Ebe, Yasuhiko Arakawa, Takaaki Kakitsuka, and Mitsuru Sugawara, Phys. Rev. B 77, 195318 (2008).

    Article  ADS  Google Scholar 

  18. P. Jayavel, H. Tanaka, T. Kita, O. Wada, H. Ebe, M. Sugawara, J. Tatebayashi, Y. Arakawa, Y. Nakata, and T. Akiyama, Appl. Phys. Lett. 84, 1820 (2004).

    Article  ADS  Google Scholar 

  19. T. T. Chen, Y. F. Chen, J. S. Wang, Y. S. Huang, R. S. Hsiao, J. F. Chen, C. M. Lai, and J. Y. Chi, Semicond. Sci. Technol. 22, 1077 (2007).

    Article  ADS  Google Scholar 

  20. E. L. Portnoi, I. M. Gadzhiev, A. E. Gubenko, M. M. Sobolev, and A. R. Kovsh, Tech. Phys. Lett. 33, 686 (2007).

    Article  ADS  Google Scholar 

  21. M. M. Sobolev, E. L. Portnoi, I. M. Gadzhiev, I. M. Bakshaev, V. S. Mikhrin, V. N. Nevedomskii, M. S. Buyalo, and Yu. M. Zadiranov, Semiconductors 43, 490 (2009).

    Article  ADS  Google Scholar 

  22. V. V. Nikolaev, N. S. Averkiev, M. M. Sobolev, I. M. Gadzhiyev, I. O. Bakshaev, M. S. Buyalo, and E. L. Portnoi, Phys. Rev. B 80, 205304 (2009).

    Article  ADS  Google Scholar 

  23. M. M. Sobolev, I. M. Gadzhiev, I. O. Bakshaev, V. N. Nevedomskii, M. S. Buyalo, Yu. M. Zadiranov, and E. L. Portnoi, Semiconductors 45, 1064 (2011).

    Article  ADS  Google Scholar 

  24. M. M. Sobolev, A. P. Vasil’ev, and V. N. Nevedomskii, Semiconductors 44, 761 (2010).

    Article  ADS  Google Scholar 

  25. A. Gubenko, D. Livshits, I. Krestnikov, S. Mikhrin, A. Kozhukhov, A. Kovsh, N. Ledentsov, A. Zhukov, and E. Portnoi, Electron Lett. 41, 1124 (2005).

    Article  Google Scholar 

  26. M. Grundmann, N. N. Ledentsov, O. Stier, J. Böhrer, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, Phys. Rev. B 53, R10509 (1996).

    Article  ADS  Google Scholar 

  27. F. Adler, M. Geiger, A. Bauknecht, F. Scholz, H. Schweizer, M. H. Pilkuhn, B. Ohnesorge, and A. Forchel, J. Appl. Phys. 80, 4019 (1996).

    Article  ADS  Google Scholar 

  28. N. N. Ledentsov, V. A. Shchukin M. Grundmann, N. Kirstaedter, J. Böhrer, O. Schmidt, D. Bimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop’ev, S. V. Saitsev, N. Yu. Bordeev, Zh. I. Alverov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U. Gösele, and J. Heidenreich, Phys. Rev. B 54, 743 (1996).

    Article  Google Scholar 

  29. M. M. Sobolev, G. E. Cirlin, Yu. B. Samsonenko, N. K. Polyakov, A. A. Tonkikh, and Yu. G. Musikhin, Semiconductors 39, 119 (2005).

    Article  ADS  Google Scholar 

  30. M. M. Sobolev, A. E. Zhukov, A. P. Vasil’ev, E. S. Semenova, V. S. Mikhrin, G. E. Tsyrlin, and Yu. G. Musikhin, Semiconductors 40, 331 (2004).

    Article  ADS  Google Scholar 

  31. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Sobolev.

Additional information

Original Russian Text © M.M. Sobolev, I.M. Gadzhiyev, I.O. Bakshaev, V.N. Nevedomskiy, M.S. Buyalo, Yu.M. Zadiranov, R.V. Zolotareva, E.L. Portnoi, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 1, pp. 96–102.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobolev, M.M., Gadzhiyev, I.M., Bakshaev, I.O. et al. Polarization dependences of electroluminescence and absorption of vertically correlated InAs/GaAs QDs. Semiconductors 46, 93–98 (2012). https://doi.org/10.1134/S1063782612010186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612010186

Keywords

Navigation