Skip to main content
Log in

Nonequilibrium population of charge carriers in structures with InGaN deep quantum dots

  • Low-Dimensional Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Electronic and optical properties of ensembles of quantum dots with various energies of activation from the ground-state level to the continuous-spectrum region were studied theoretically and experimentally with the InGaN quantum dots as an example. It is shown that, depending on the activation energy, both the quasi-equilibrium statistic of charge carriers at the levels of quantum dots and nonequilibrium statistic at room temperature are possible. In the latter case, the position of the maximum in the emission spectrum is governed by the value of the demarcation transition: the quantum dots with the transition energy higher than this value feature the quasi-equilibrium population of charge carriers, while the quantum dots with the transition energy lower than the demarcation-transition energy feature the nonequilibrium population. A model based on kinetic equations was used in the theoretical analysis. The key parameters determining the statistic are the parameters of thermal ejection of charge carriers; these parameters depend exponentially on the activation energy. It is shown experimentally that the use of stimulated phase decomposition makes it possible to appreciably increase the activation energy. In this case, the thermal-activation time is found to be much longer than the recombination time for an electron-hole pair, which suppresses the redistribution of charge carriers between the quantum dots and gives rise to the nonequilibrium population. The effect of nonequilibrium population on the luminescent properties of the structures with quantum dots is studied in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).

    Google Scholar 

  2. S. S. Mikhrin, A. E. Zhukov, A. R. Kovsh, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 1400 (2002) [Semiconductors 36, 1315 (2002)].

    Google Scholar 

  3. C. Santori, D. Fattal, J. Vuckovic, et al., Nature 419, 594 (2002).

    Article  ADS  Google Scholar 

  4. Y. Arakawa and S. Kako, in Proceedings of 6th International Conference on Nitride Semiconductors, ICNS6 (Bremen, Germany, 2005), Th-OP5-1.

  5. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahara, Jpn. J. Appl. Phys., Part 2 34, L797 (1995).

    Article  Google Scholar 

  6. T. Mukai, M. Yamada, and S. Nakamura. Jpn. J. Appl. Phys., Part 1 38, 3976 (1999).

    Article  Google Scholar 

  7. P. N. Brunkov, A. Patane, A. Levin, et al., Phys. Rev. B 65, 085326 (2002).

  8. L. V. Asryan and R. A. Suris, Semicond. Sci. Technol. 11, 554 (1996).

    Article  ADS  Google Scholar 

  9. M. V. Maksimov, D. S. Sizov, A. G. Makarov, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 38, 1245 (2004) [Semiconductors 38, 1207 (2004)].

    Google Scholar 

  10. M. S. Jeong, J. Y. Rim, Y.-W. Kim, et al., Appl. Phys. Lett. 79, 976 (2001).

    Article  ADS  Google Scholar 

  11. M. Takeguchi, M. R. McCartney, and D. J. Smith, Appl. Phys. Lett. 84, 2103 (2004).

    Article  ADS  Google Scholar 

  12. D. S. Sizov, V. S. Sizov, G. E. Onuskhin, et al., in Proceedings of 13th International Conference on Nanostrucrures: Physics and Technology (St. Petersburg, 2005), p. 294.

  13. D. S. Sizov, V. S. Sizov, V. V. Lundin, et al., in Proceedings of 13th International Conference on Nanostrucrures: Physics and Technology (St. Petersburg, 2005), p. 296.

  14. I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, et al., Phys. Rev. B 66, 155310 (2002).

    Google Scholar 

  15. D. S. Sizov, V. S. Sizov, G. E. Onushkin, et al., in Proceedings of International Conference on Nanomeeting (Minsk, Belarus, 2005).

  16. V. S. Sizov, D. S. Sizov, G. A. Mikhaĭlovskiĭ, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 40, 589 (2006) [Semiconductors 40, 574 (2006)].

    Google Scholar 

  17. L. V. Asryan and R. A. Suris, IEEE J. Sel. Top. Quantum Electron. 3, 148 (1997).

    Article  Google Scholar 

  18. S. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  19. M. V. Maximov, A. F. Tsatsul’nikov, B. V. Bolovik, et al., Phys. Rev. B 62, 16671 (2000).

    Article  ADS  Google Scholar 

  20. S.-H. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).

    Article  ADS  Google Scholar 

  21. P. G. Eliseev, J. Appl. Phys. 93, 5404 (2003).

    Article  ADS  Google Scholar 

  22. D. S. Sizov, V. S. Sizov, E. E. Zavarin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 264 (2005) [Semiconductors 39, 249 (2005)].

    Google Scholar 

  23. D. S. Sizov, V. S. Sizov, V. V. Lundin, et al., Fiz. Tekh. Poluprovodn. (St. Petersburg) 39, 1350 (2005) [Semiconductors 39, 1304 (2005)].

    Google Scholar 

  24. Yu. G. Musikhin, D. Gerthsen, D. A. Bedarev, et al., Appl. Phys. Lett. 80, 2099 (2002).

    Article  ADS  Google Scholar 

  25. N. C. Casey, Jr. and M. B. Panish, Heterostructure Lasers (Academic, London, 1978; Mir, Moscow, 1981).

    Google Scholar 

  26. Sh. M. Kogan, Fiz. Tekh. Poluprovodn. (Leningrad) 11, 1159 (1977) [Sov. Phys. Semicond. 11, 684 (1977)].

    Google Scholar 

  27. K. A. Bulashevich, S. Yu. Karpov, and R. A. Suris, in Proceedings of III All-Russia Conference on Gallium, Indium, and Aluminum Nitrides: Structures and Devices (Moscow, 2004), p. 88.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.S. Sizov, E.E. Zavarin, N.N. Ledentsov, V.V. Lundin, Yu.G. Musikhin, V.S. Sizov, R.A. Suris, A.F. Tsatsul’nikov, 2007, published in Fizika i Tekhnika Poluprovodnikov, 2007, Vol. 41, No. 5, pp. 595–608.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sizov, D.S., Zavarin, E.E., Ledentsov, N.N. et al. Nonequilibrium population of charge carriers in structures with InGaN deep quantum dots. Semiconductors 41, 575–589 (2007). https://doi.org/10.1134/S1063782607050193

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782607050193

PACS numbers

Navigation