Skip to main content
Log in

Long-range spatial correlations in the turbulent edge plasma of the L-2M stellarator

  • Stellarators
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Long-range spatial correlations in the turbulent plasma of the L-2M stellarator were revealed experimentally, and their relation to the geometry of magnetic surfaces was analyzed (Plasma Phys. Control. Fusion 50, 045001 (2008)). The operation modes of the facility in which fast transport transitions in plasma are possible were studied. Upon these transitions, the turbulence level is found to decrease substantially. It is shown that long-range spatial correlations are typical of relatively narrow frequency ranges. In particular, before a transport transition, such frequency ranges are f ∼ 30–40 kHz and f ∼ 1–3 kHz. After the transition, long-range spatial correlations in the frequency range of f ∼ 30–40 kHz disappear due to a significant decrease in the turbulence level in this frequency range. At the same time, correlations in the low frequency range are retained and new correlations at frequencies of f ∼ 6-12 kHz occur. It is found that global electromagnetic oscillations in the frequency range of f ∼ 1–3 kHz are related to the m/n = 0/0 perturbation and its toroidal satellites (here, m and n are the poloidal and toroidal mode numbers, respectively). It is also shown that, after the transport transition, a three-dimensional localized electromagnetic mode at the frequency of the geodesic acoustic mode governed by the average magnetic field curvature is excited. At higher frequencies typical of a geodesic acoustic mode related to the three-dimensional curvature of the magnetic field, no long-range spatial correlations were observed both before and after the transport transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Endler, J. Nucl. Mater. 84, 266 (1999).

    Google Scholar 

  2. G. B. Conway, Plasma Phys. Controlled Fusion 50, 124026 (2008).

    Article  ADS  Google Scholar 

  3. G. R. Tynan, A. Fujisawa, and G. McKee, Plasma Phys. Controlled Fusion 51, 113001 (2009).

    Article  ADS  Google Scholar 

  4. X. Garbet, Y. Idomara, L. Villard, and T. Watanabe, Nucl. Fusion 50, 043002 (2010).

    Article  ADS  Google Scholar 

  5. V. P. Budaev, S. P. Savin, and L. M. Zelenyi, Phys. Usp. 54, 875 (2011).

    Article  ADS  Google Scholar 

  6. P. H. Diamond, S.-I. Itoh, and K. Itoh, Modern Plasma Physics, Vol. 1: Physical Kinetics of Turbulent Plasmas (Cambridge University Press, Cambridge, 2010).

    Google Scholar 

  7. P. H. Diamond, K. Itoh, S.-I. Itoh, and T. S. Hahm, Plasma Phys. Controlled Fusion 47, R35 (2005).

    Article  ADS  Google Scholar 

  8. A. Fudjisawa, T. Ido, A. Shimizu, et al., Nucl. Fusion 47, 718 (2008).

    Article  Google Scholar 

  9. A. Fudjisawa, Nucl. Fusion 49, 013001 (2010).

    Article  ADS  Google Scholar 

  10. N. Winsor, J. L. Johnson, and J. M. Dawson, Phys. Fluids 11, 2448 (1968).

    Article  ADS  Google Scholar 

  11. T. Watari, Y. Hamada, A. Nishizawa, et al., Plasma Sci. Technol. 6, 105 (2006).

    Article  ADS  Google Scholar 

  12. K. Hallatschek, Plasma Phys. Controlled Fusion 49, B137 (2007).

    Article  ADS  Google Scholar 

  13. S. V. Shchepetov, Yu. V. Kholnov, and D. G. Vasilkov, JETP Lett. 91, 170 (2010).

    Article  ADS  Google Scholar 

  14. S. V. Shchepetov, Yu. V. Kholnov, O. I. Fedyanin, et al., Plasma Phys. Controlled Fusion 50, 045001 (2008).

    Article  ADS  Google Scholar 

  15. L. M. Kovrizhnykh and S. V. Shchepetov, Sov. J. Plasma Phys. 6, 533 (1980).

    Google Scholar 

  16. S. V. Shchepetov, Yu. V. Kholnov, and D. G. Vasil’kov, Plasma Phys. Rep. 39, 130 (2013).

    Article  ADS  Google Scholar 

  17. Yu. V. Kholnov, Tr. IOFAN 31, 117 (1991).

    Google Scholar 

  18. G. Samorodnitsky, Found. Trends Stoch. Systems 1, 163 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Ph. van Milligan, E. Sanchez, T. Estrada, et al., Phys. Plasmas 2, 3017 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  20. G. M. Batanov, A. E. Petrov, K. A. Sarksyan, et al., JETP Lett. 67, 662 (1998).

    Article  ADS  Google Scholar 

  21. A. Fudjisawa, K. Itoh, H. Iguchi, et al., Phys. Rev. Lett. 93, 165003 (2004).

    Article  ADS  Google Scholar 

  22. D. Lortz, Nucl. Fusion 15, 49 (1975).

    Article  ADS  Google Scholar 

  23. L.-Z. Zheng, Phys. Lett. A 164, 424 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Vasil’kov.

Additional information

Original Russian Text © D.G. Vasil’kov, Yu.V. Kholnov, S.V. Shchepetov, 2013, published in Fizika Plazmy, 2013, Vol. 39, No. 8, pp. 694–703.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’kov, D.G., Kholnov, Y.V. & Shchepetov, S.V. Long-range spatial correlations in the turbulent edge plasma of the L-2M stellarator. Plasma Phys. Rep. 39, 615–623 (2013). https://doi.org/10.1134/S1063780X13080072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X13080072

Keywords

Navigation