Skip to main content
Log in

Magnetoresistance hysteresis in granular HTSCs as a manifestation of the magnetic flux trapped by superconducting grains in YBCO + CuO composites

  • Order, Disorder, and Phase Transition in Condensed Systems
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Hysterestic behavior of the magnetoresistance of granular HTSCs and its interaction with the magnetic hysteresis are studied by measuring magnetoresistance R(H) and critical current I c(H) of composites formed by HTSC Y0.75Lu0.25Ba2Cu3O7 and CuO. A network of Josephson junctions is formed in such composites, in which the nonsuperconducting component plays the role of barriers between HTSC grains. Hysteretic dependences R(H) of magnetoresistance are studied in a wide range of transport current density j and are analyzed in the framework of the two-level model of a granular superconductor, in which dissipation takes place in the Josephson medium and the magnetic flux can be pinned both in grains and in the Josephson medium. The interrelation between the hysteresis of critical current I c(H) and the evolution of the hysterestic dependence R(H) of the magnetoresistance upon transport current variation is demonstrated experimentally. The effect of the magnetic past history on the hysteretic behavior of R(H) and the emergence of a segment with a negative magnetoresistance are analyzed. It is shown for the first time that the R(H) dependences are characterized by a parameter that is independent of the transport current, viz., the width of the R(H) hysteresis loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nojima, S. Tsuchimoto, and S. Kataoka, Jpn. J. Appl. Phys. 27, 746 (1988).

    Article  ADS  Google Scholar 

  2. Y. J. Quian, Z. M. Yang, K. Y. Chen, et al., Phys. Rev. B 39, 4701 (1989).

    Article  ADS  Google Scholar 

  3. K. Y. Chen and Y. J. Quian, Physica C (Amsterdam) 159, 131 (1989).

    ADS  Google Scholar 

  4. G. J. Russel, D. N. Matthews, K. N. R. Taylor, and B. Perczuk, Mod. Phys. Lett. B 3, 437 (1989).

    Article  ADS  Google Scholar 

  5. M. E. McHenry, P. P. Maley, and J. O. Willis, Phys. Rev. B 40, 2666 (1989).

    Article  ADS  Google Scholar 

  6. B. A. Aronzon, Yu. V. Gershanov, E. Z. Meĭlikhov, and V. G. Shapiro, Sverkhprovodimost: Fiz. Khim. Tekh. 2, 83 (1989).

    Google Scholar 

  7. N. V. Afanas’ev, Yu. E. Grigorashvili, and Yu. A. Chaplygin, Sverkhprovodimost: Fiz. Khim. Tekh. 3, 2343 (1990).

    Google Scholar 

  8. Yu. S. Karimov and A. D. Kikin, Sverkhprovodimost: Fiz. Khim. Tekh. 3, 631 (1990).

    Google Scholar 

  9. Ya. V. Kopelevich, V. V. Lemanov, and V. V. Makarov, Fiz. Tverd. Tela (Leningrad) 32, 3613 (1990) [Sov. Phys. Solid State 32, 2095 (1990)].

    Google Scholar 

  10. M. A. Vasyutin, A. I. Golovashkin, N. D. Kuz’michev, et al., Preprint No. 85, FIAN SSSR (Physical Inst., USSR Academy of Sciences, Moscow, 1990).

    Google Scholar 

  11. D. N. Matthews, G. J. Russel, and K. N. R. Taylor, Physica C (Amsterdam) 171, 301 (1990).

    ADS  Google Scholar 

  12. E. Altshuler, S. Garcia, and J. Barroso, Physica C (Amsterdam) 177, 61 (1991).

    ADS  Google Scholar 

  13. A. I. Ponomarev, K. R. Krylov, M. V. Medvedev, et al., Sverkhprovodimost: Fiz. Khim. Tekh. 4, 2149 (1991).

    Google Scholar 

  14. M. Celasco, A. Masoero, P. Mazzetti, and A. Stepanescu, Phys. Rev. B 44, 5366 (1991).

    Article  ADS  Google Scholar 

  15. L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, Phys. Rev. B 47, 470 (1993).

    Article  ADS  Google Scholar 

  16. M. Prester and Z. Mahornic, Phys. Rev. B 47, 2801 (1993).

    Article  ADS  Google Scholar 

  17. A. V. Mitin, Sverkhprovodimost: Fiz. Khim. Tekh. 7, 62 (1994).

    Google Scholar 

  18. N. D. Kuz’michev, Pis’ma Zh. Éksp. Teor. Fiz. 74, 291 (2001) [JETP Lett. 74, 262 (2001)].

    Google Scholar 

  19. P. Mune, E. Govea-Alcaide, and R. F. Jardim, Physica C (Amsterdam) 354, 275 (2001).

    ADS  Google Scholar 

  20. D. Daghero, P. Mazzetti, A. Stepanescu, et al., Phys. Rev. B 66, 11478 (2002).

  21. C. A. M. dos Santos, M. S. da Luz, B. Ferreira, and A. J. S. Machado, Physica C (Amsterdam) 391, 345 (2003).

    ADS  Google Scholar 

  22. P. Mune, F. C. Fonesca, R. Muccillo, and R. F. Jardim, Physica C (Amsterdam) 390, 363 (2003).

    ADS  Google Scholar 

  23. L. Burlachkov, E. Mogilko, Y. Schlessinger, et al., Phys. Rev. B 67, 104509 (2003).

    Google Scholar 

  24. O. V. Gerashchenko, Supercond. Sci. Technol. 16, 690 (2003).

    Article  ADS  Google Scholar 

  25. I. Felner, E. Galstyan, B. Lorenz, et al., Phys. Rev. B 67, 134506 (2003).

  26. A. Sukhanov and V. Omel’chenko, Fiz. Nizk. Temp. 29, 396 (2003) [Low Temp. Phys. 29, 297 (2003)].

    Google Scholar 

  27. A. Sukhanov and V. Omel’chenko, Fiz. Nizk. Temp. 30, 604 (2004).

    Google Scholar 

  28. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 46, 1740 (2004) [Phys. Solid State 46, 1798 (2004)].

    Google Scholar 

  29. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, Fiz. Tverd. Tela (St. Petersburg) 48, 1374 (2006) [Phys. Solid State 48, 1455 (2006)].

    Google Scholar 

  30. D. A. Balaev, S. I. Popkov, K. A. Shaĭkhutdinov, and M. I. Petrov, Fiz. Tverd. Tela (St. Petersburg) 48, 588 (2006) [Phys. Solid State 48, 826 (2006)].

    Google Scholar 

  31. L. P. Ichkitidze, Physica C (Amsterdam) 435, 136 (2006).

    ADS  Google Scholar 

  32. D. A. Balaev, A. G. Prus, K. A. Shaĭkhutdinov, and M. I. Petrov, Pis’ma Zh. Tekh. Fiz. 32(8), 67 (2006) [Tech. Phys. Lett. 32, 680 (2006)].

    Google Scholar 

  33. É. B. Sonin, Pis’ma Zh. Éksp. Teor. Fiz. 47, 415 (1988) [JETP Lett. 47, 496 (1988)].

    ADS  Google Scholar 

  34. M. Mahel’ and J. Pivarc, Physica C (Amsterdam) 308, 147 (1998).

    ADS  Google Scholar 

  35. M. I. Petrov, D. A. Balaev, S. V. Ospishchev, et al., Phys. Lett. A 237, 85 (1997).

    Article  ADS  Google Scholar 

  36. M. I. Petrov, D. A. Balaev, D. M. Gohfeld, et al., Physica C (Amsterdam) 314, 51 (1999).

    ADS  Google Scholar 

  37. M. I. Petrov, D. A. Balaev, K. A. Shaĭkhutdinov, and K. S. Aleksandrov, Fiz. Tverd. Tela (St. Petersburg) 41, 969 (1999) [Phys. Solid State 41, 881 (1999)].

    Google Scholar 

  38. M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, and K. S. Aleksandrov, Supercond. Sci. Technol. 14, 798 (2001).

    Article  ADS  Google Scholar 

  39. M. I. Petrov, D. A. Balaev, and K. A. Shaihutdinov, Physica C (Amsterdam) 361, 45 (2001).

    ADS  Google Scholar 

  40. K. A. Shaĭkhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, Fiz. Tverd. Tela (St. Petersburg) 45, 1776 (2003) [Phys. Solid State 45, 1866 (2003)].

    Google Scholar 

  41. A. Barone and G. Paterno, Physics and Applications of the Josephson Effect (Wiley-Interscience, New-York, 1982; Mir, Moscow, 1984), p. 639.

    Google Scholar 

  42. A. D. Balaev, Yu. V. Boyarshinov, M. I. Karpenko, and B. P. Khrustalev, Prib. Tekh. Éksp., No. 3, 167 (1985); Available from VINITI, No. 69–85.

  43. D.-X. Chen, R. B. Goldfarb, R. W. Gross, and A. Sanchez, Phys. Rev. B 48, 6426 (1993).

    Article  ADS  Google Scholar 

  44. Y. M. Kim, C. F. Hempstead, and A. M. Strnad, Phys. Rev. 131, 2486 (1963).

    Article  ADS  Google Scholar 

  45. L. F. Cohen and H. J. Jensen, Rep. Prog. Phys. 60, 1581 (1997).

    Article  ADS  Google Scholar 

  46. G. Blatter, M. V. Feigel’man, V. B. Gekshkebein, et al., Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balaev.

Additional information

Original Russian Text © D.A. Balaev, D.M. Gokhfeld, A.A. Dubrovskiĭ, S.I. Popkov, K.A. Shaikhutdinov, M.I. Petrov, 2007, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 132, No. 6, pp. 1340–1351.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balaev, D.A., Gokhfeld, D.M., Dubrovskiĭ, A.A. et al. Magnetoresistance hysteresis in granular HTSCs as a manifestation of the magnetic flux trapped by superconducting grains in YBCO + CuO composites. J. Exp. Theor. Phys. 105, 1174–1183 (2007). https://doi.org/10.1134/S1063776107120084

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776107120084

PACS numbers

Navigation