Skip to main content
Log in

On the Use of Bayesian Model Averaging for Covariate Selection in Epidemiological Modeling

  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

Bayesian model averaging (BMA) is a powerful technique to address model selection uncertainty and recent computational advances have led to a proliferation of usage. BMA methods are of particular interest in environmental health risk assessment because of the high degree of uncertainty that typically arises in that context. In this article, we review a variety of approaches to conducting BMA and compare four implementations in a setting where there are a number of potential predictors. We then use these four methods to calculate risk assessment measures that account for the uncertainty involved in modeling environmental exposures. These methods are used to reexamine data from a study conducted by Walkowiak et al. (2001) to investigate the effects of maternal polychlorinated biphenyl exposure on cognitive development in early childhood. This case study reveals that different strategies for implementing BMA can yield varying risk assessment results. We conclude with some practical recommendations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailer, A. J., R. B. Noble, and M. W. Wheeler. 2005. Model uncertainty and risk estimation for experimental studies of quantal responses. Risk Anal., 25, 291–299.

    Article  Google Scholar 

  • Budtz-Jorgensen, E., N. Keiding, and P. Grandjean. 2001. Benchmark Dose calculations from epidemiological data. Biometrics, 57, 698–706.

    Article  MathSciNet  Google Scholar 

  • Caldwell, B. M., and R. H. Bradley. 1985. Home observation for measurement of the environment. New York, NY, Dorsey.

    Google Scholar 

  • Carlin, B. P., and S. Chib 1995. Bayesian model choice via Markov chain Monte Carlo methods. J. R. Stat. Soc. Ser. B, 57, 473–484.

    MATH  Google Scholar 

  • Clyde, M. 1999. Discussion of Bayesian model averaging: A tutorial by Hoeting JA, Madigan D, Raftery AE, Volinksy CT. Stat. Sci., 14, 382–417.

    Article  MathSciNet  Google Scholar 

  • Clyde, M. 2000. Model uncertainty and health effects studies for particulate matter. Environmetrics, 11, 745–763.

    Article  Google Scholar 

  • Clyde, M. 2003. Model averaging. In Subjective and objective Bayesian statistics, (ed. J. Press, 320–333. New York, NY, John Wiley and Sons.

    Google Scholar 

  • Clyde, M., and E. I. George. 2004. Model uncertainty. Stat. Sci., 19, 81–94.

    Article  MathSciNet  Google Scholar 

  • Crump, K. S. 1984. A new method for determining allowable daily intakes. Fundam. Appl. Toxicol., 4, 854–871.

    Article  Google Scholar 

  • Crump, K. S. 1995. Calculation of benchmark doses from continuous data. Risk Anal., 15, 79–89.

    Article  Google Scholar 

  • Dellaportas, P., J. Forster, and I. Ntzoufras. 2002. Bayesian model and variable selection using MCMC. Stat. and Computing, 12, 27–36.

    Article  MathSciNet  Google Scholar 

  • Draper, D. (1995). Assessment and propagation of model uncertainty. J. R. Stat. Soc., Ser. B, 57, 45–97.

    MathSciNet  MATH  Google Scholar 

  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin. 2004. Bayesian data analysis, 2nd ed. Boca Raton, FL, Chapman and Hall/CRC.

    MATH  Google Scholar 

  • George, E. I., and R. E. McCulloch. 1993. Gibbs variable selection via Gibbs sampling. J. Am. Stat. Assoc., 88, 881–889.

    Article  Google Scholar 

  • Green, P. J. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.

    Article  MathSciNet  Google Scholar 

  • Hoeting, J. A., D. Madigan, A. E. Raftery, and C. T. Volinsky. 1999. Bayesian model averaging: A tutorial. Stat. Sci., 14, 382–117.

    Article  MathSciNet  Google Scholar 

  • Hoeting, J., A. E. Raftery, and D. Madigan. 1996. A method for simultaneous variable selection and outlier identification in linear regression. Comput. Stat. Data Anal., 22, 251–270.

    Article  Google Scholar 

  • Jacobson, J. L. and S. W. Jacobson. 1996. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. N. Engl. J. Medi., 335, 783–789.

    Article  Google Scholar 

  • Kass, R., and A. Raftery. 1995. Bayes factors. J. Am. Stat. Assoc., 90, 773–795.

    Article  MathSciNet  Google Scholar 

  • Longnecker, M. P., M. S. Wolff, B. C. Gladen, J. W. Brock, P. Grandjean, J. L. Jacobson, S. A. Korrick, W. J. Rogan, N. Weisglas-Kuperus, I. Hertz-Picciotto, P. Ayotte, P. Stewart, G. Winneke, M. J. Charles, S. W. Jacobson, E. Dewailly, E. R. Boersma, L. M. Altshul, B. Heinzow, J. J. Pagano, and A. A. Jensen. 2003. Comparison of polychlorinated biphenyl levels across studies of human neurodevelopment. Environ. Health Perspect., 111, 65–70.

    Article  Google Scholar 

  • Lunn, D. J., A. Thomas, N. Best, and D. Spiegelhalter. 2000. WinBUGS—A Bayesian modeling framework: Concepts, structure and extensibility. Stat. and Comput., 10, 325–337.

    Article  Google Scholar 

  • Morales, K. H., J. G. Ibrahim, C. Chen, and L. M. Ryan. 2006. Bayesian model averaging with applications to benchmark dose estimation for arsenic in drinking water. J. Am. Stat. Assoc., 101, 9–17.

    Article  MathSciNet  Google Scholar 

  • Ntzoufras, I. 2002. Gibbs variable selection using BUGS. J. Stat. Software, 7, 1–19.

    Article  Google Scholar 

  • Raftery, A. E. 1995. Bayesian model selection in social research. Sociol. Methodol., 25, 111–163.

    Article  Google Scholar 

  • Raftery, A. E., D. Madigan, and J. Hoeting. 1997. Bayesian model averaging for linear regression models. J. Am. Stat. Assoc., 92, 179–191.

    Article  MathSciNet  Google Scholar 

  • Ribas-Fitó, N., M. Sala, M. Kogevinas, and J. Sunyer. 2001. Polychlorinated biphenyls (PCBs) and neurological development in children: A systematic review. J. Epidemiol. Commun. Health, 55, 537–546.

    Article  Google Scholar 

  • Schwarz, G. 1978. Estimating the dimension of a model. Ann. Stat., 6, 461–464.

    Article  MathSciNet  Google Scholar 

  • Vreugdenhil, H. J. I. 2003. Neurodevelopmental effects of prenatal exposure to environmental levels of PCBs and dioxins in children at school age. Rotterdam, The Netherlands, Optima Grafische Communicatie.

    Google Scholar 

  • Walkowiak, J., J. A. Wiener, A. Fastabend, B. Heinzow, U. Kramer, E. Schmidt, H. J. Steingrueber, S. Wundram, and G. Winneke. 2001. Environmental exposure to polychlorinated biphenyls and quality of the home environment: Effects on psychodevelopment in early childhood. Lancet, 358, 1602–1607.

    Article  Google Scholar 

  • Wasserman, L. 2000. Bayesian model selection and model averaging. J. Math. Psychol., 44, 92–107.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa Whitney.

Additional information

Melissa Whitney’s research was supported in part by a grant provided by the National Institutes of Health (NIH 5T32ES007142 Graduate Training in Biostatistics).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitney, M., Ryan, L. & Walkowiak, J. On the Use of Bayesian Model Averaging for Covariate Selection in Epidemiological Modeling. J Stat Theory Pract 7, 233–247 (2013). https://doi.org/10.1080/15598608.2013.772037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1080/15598608.2013.772037

AMS Classification

Keywords

Navigation