Skip to main content
Log in

Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: Implications for multiple sclerosis

  • Short Communication
  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

The multiple sclerosis-associated retrovirus (MSRV), originally identified in cell cultures from patients with multiple sclerosis (MS), is closely related to the human endogenous retrovirus family W (HERV-W). Recently, HERV-W gag and env protein expression was demonstrated in MS lesions in situ. Here, the authors show that HERV-W gag and env proteins are induced by herpes simplex virus type 1 (HSV-1) in neuronal and brain endothelial cells in vitro. The transactivation of HERV-W proteins by HSV-1 could enhance their potential oligodendrotoxic and immunopathogenic effects, representing a mechanism by which HSV-1, and possibly also other herpesviruses associated with MS, may be linked to the pathogenesis of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Antony JM, van Marie G, Opii W, Butterfield DA, Mallet F, Yong VW, Wallace JL, Deacon RM, Warren K, Power C (2004). Human endogenous retrovirus glycoproteinmediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7: 1088–1095.

    Article  PubMed  CAS  Google Scholar 

  • Barnett MH, Prineas JW (2004). Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55: 458–468.

    Article  PubMed  Google Scholar 

  • Blond J-L, Beseme F, Duret L, Bouton O, Bedin F, Perron H, Mandrand B, Mallet F (1999). Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 73: 1175–1185.

    PubMed  CAS  Google Scholar 

  • Christensen T (2005). Association of human endogenous retroviruses with multiple sclerosis and possible interactions with herpes viruses. Rev Med Virol 15: 179–211.

    Article  PubMed  Google Scholar 

  • Cook SD, Rohowsky-Kochan C, Bansil S, Dowling PC (1995). Evidence for multiple sclerosis as an infectious disease. Acta Neurol Scand Suppl 161: 34–42.

    Article  PubMed  CAS  Google Scholar 

  • Dalgleish AG (1997). Viruses and multiple sclerosis. Acta Neurol Scand Suppl 169: 8–15.

    Article  PubMed  CAS  Google Scholar 

  • de Parseval N, Lazar V, Casella JF, Benit L, Heidmann T (2003). Survey of human genes of retroviral origin: identification and transcriptome of the genes with coding capacity for complete envelope proteins. J Virol 77: 10414–10422.

    Article  PubMed  Google Scholar 

  • Dolei A, Serra C, Mameli G, Pugliatti M, Sechi G, Cirotto MC, Rosati G, Sotgiu S (2002). Multiple sclerosisassociated retrovirus (MSRV) in Sardinian MS patients. Neurology 58: 471–473.

    PubMed  CAS  Google Scholar 

  • Fan H (1997). Leukemogenesis by Moloney murine leukemia virus: a multistep process. Trends Microbiol 5: 74–82.

    Article  PubMed  CAS  Google Scholar 

  • Garson JA, Tuke PW, Giraud G, Paranhos-Baccala G, Perron H (1998). Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet 351: 33.

    Article  PubMed  CAS  Google Scholar 

  • Karlsson H, Bachmann S, Schroder J, McArthur J, Torrey EF, Yolken RH (2001). Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci U S A 98: 4634–4639.

    Article  PubMed  CAS  Google Scholar 

  • Komurian-Pradel F, Paranhos-Baccala G, Bedin F, Ounanian-Paraz A, Sodoyer M, Ott C, Rajoharison A, Garcia E, Mallet F, Mandrand B, Perron H (1999). Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles. Virology 260: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Kurtzke JF (2000). Multiple sclerosis in time and space— geographic clues to cause. J NeuroVirol 6: S134-S140.

    PubMed  Google Scholar 

  • Kwun HJ, Han HJ, Lee WJ, Kim HS, Jang KL (2002). Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res 86: 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Lafon M, Jouvin-Marche E, Marche PN, Perron H (2002). Human viral superantigens: to be or not to be transactivated? Trends Immunol 23: 238–239; author reply 239.

    Article  PubMed  CAS  Google Scholar 

  • Lee WJ, Kwun HJ, Kim HS, Jang KL (2003). Activation of the human endogenous retrovirus W long terminal repeat by herpes simplex virus type 1 immediate early protein 1. Mol Cells 15: 75–80.

    PubMed  CAS  Google Scholar 

  • Mallet F, Bouton O, Prudhomme S, Cheynet V, Oriol G, Bonnaud B, Lucotte G, Duret L, Mandrand B (2004). The endogenous retroviral locus ERVWE1 is a bona fide gene involved in hominoid placental physiology. Proc Natl Acad Sci USA 101: 1731–1736.

    Article  PubMed  CAS  Google Scholar 

  • Noseworthy JH (1999). Progress in determining the causes and treatment of multiple sclerosis. Nature 399: A40-A47.

    PubMed  CAS  Google Scholar 

  • Nowak J, Januszkiewicz D, Pernak M, Liwen I, Zawada M, Rembowska J, Nowicka K, Lewandowski K, Hertmanowska H, Wender M (2003). Multiple sclerosisassociated virus-related pol sequences found both in multiple sclerosis and healthy donors are more frequently expressed in multiple sclerosis patients. J NeuroVirol 9: 112–117.

    PubMed  CAS  Google Scholar 

  • Palmarini M, Mura M, Spencer TE (2004). Endogenous betaretroviruses of sheep: teaching new lessons in retroviral interference and adaptation. J Gen Virol 85: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Palu G, Benetti L, Calistri A (2001). Molecular basis of the interactions between herpes simplex viruses and HIV-1. Herpes 8: 50–55.

    PubMed  CAS  Google Scholar 

  • Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, Lalande B, Seigneurin JM, Mandrand B (1997). Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc Natl Acad Sci U S A 94: 7583–7588.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Geny C, Laurent A, Mouriquand C, Pellat J, Ferret J, Seigneurin JM (1989). Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res Virol 140: 551–561.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, Jolivet-Reynaud C, Marcel F, Souillet Y, Borel E, Gebuhrer L, Santoro L, Marcel S, Seigneurin JM, Marche PN, Lafon M (2001). Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal V beta 16 T-lymphocyte activation. Virology 287: 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Lazarini F, Ruprecht K, Pechoux-Longin C, Seilhean D, Sazdovitch V, Creange A, Battail-Poirot N, Sibai G, Santoro L, Jolivet M, Darlix J-L, Rieckmann P, Arzberger T, Hauw J-J, Lassmann H (2005). Human endogenous retrovirus (HERV)-W env and gag proteins: physiological expression in human brain and pathophysiological modulation in multiple sclerosis lesions. J NeuroVirol 11: 23–33.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Suh H, Lalande B, Gratacap B, Laurent A, Stoebner P, Seigneurin JM (1993). Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 74: 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Roizman B, Sears AE (1996). Herpes simplex viruses and their replication. In: Fields virology. Fields BN, Knipe DM, Howley PM (eds). Philadelphia: Lippincott-Raven Publishers, pp 2231–2278.

    Google Scholar 

  • Ruprecht K, Kuhlmann T, Seif F, Hummel V, Kruse N, Briick W, Rieckmann P (2001). Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions. J Neuropathol Exp Neurol 60: 1087–1098.

    PubMed  CAS  Google Scholar 

  • Ruprecht K, Perron H (2005). Exposure to infant siblings during early life and risk of multiple sclerosis. JAMA 293: 2089; author reply 2089–2090.

    Article  PubMed  CAS  Google Scholar 

  • Schiavetti F, Thonnard J, Colau D, Boon T, Coulie PG (2002). A human endogenous retroviral sequence encoding an antigen recognized on melanoma by cytolytic T lymphocytes. Cancer Res 62: 5510–5516.

    PubMed  CAS  Google Scholar 

  • Schon U, Seifarth W, Baust C, Hohenadl C, Erfle V, Leib-Mosch C (2001). Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology 279: 280–291.

    Article  PubMed  CAS  Google Scholar 

  • Simmons A (2001). Herpesviruses and multiple sclerosis. Herpes 8: 60–63.

    PubMed  CAS  Google Scholar 

  • Sotgiu S, Serra C, Mameli G, Pugliatti M, Rosati G, Arru G, Dolei A (2002). Multiple sclerosis-associated retrovirus and MS prognosis: an observational study. Neurology 59: 1071–1073.

    PubMed  CAS  Google Scholar 

  • Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT (2001). Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15: 579–589.

    Article  PubMed  CAS  Google Scholar 

  • Villoslada P, Oksenberg JR (2004). Chromosome 7q21-22 and multiple sclerosis. J Neuroimmunol 150: 1–2.

    Article  PubMed  CAS  Google Scholar 

  • Voisset C, Blancher A, Perron H, Mandrand B, Mallet F, Paranhos-Baccala G (1999). Phylogeny of a novel family of human endogenous retrovirus sequences, HERV-W, in humans and other primates. AIDS Res Hum Retroviruses 15: 1529–1533.

    Article  PubMed  CAS  Google Scholar 

  • Voisset C, Bouton O, Bedin F, Duret L, Mandrand B, Mallet F, Paranhos-Baccala G (2000). Chromosomal distribution and coding capacity of the human endogenous retrovirus HERV-W family. AIDS Res Hum Retroviruses 16: 731–740.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Wrona J, Dudley JP (1996). Exogenous mouse mammary tumor virus (MMTV) infection induces endogenous MMTV sag expression. Virology 215: 113–123.

    Article  PubMed  CAS  Google Scholar 

  • Yi JM, Kim HM, Kim HS (2004). Expression of the human endogenous retrovirus HERV-W family in various human tissues and cancer cells. J Gen Virol 85: 1203–1210.

    Article  PubMed  CAS  Google Scholar 

  • Yolken R (2004). Viruses and schizophrenia: a focus on herpes simplex virus. Herpes 11(Suppl 2): 83A-88A.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klemens Ruprecht.

Additional information

This work was supported by a grant (1.319.110/03/01) from the Gemeinnuetzige Hertie-Stiftung (KR and PR).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruprecht, K., Obojes, K., Wengel, V. et al. Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: Implications for multiple sclerosis. Journal of NeuroVirology 12, 65–71 (2006). https://doi.org/10.1080/13550280600614973

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280600614973

Keywords

Navigation