Skip to main content

Advertisement

Log in

Brain aging in acquired immunodeficiency syndrome: Increased ubiquitin-protein conjugate is correlated with decreased synaptic protein but not amyloid plaque accumulation

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

Two neuropathological changes that are linked with biological and pathological aging were examined in subjects with end-stage acquired immunodeficiency syndrome (AIDS). Autopsy brain specimens were examined from 25 people who died from complications of AIDS and 25 comparison subjects who were human immunodeficiency virus (HIV)-negative, matched for age, gender, ethnicity, and postmortem time interval. These adults were stratified into three age groups: elderly (62 to 75 years), intermediate (55 to 60 years), and young (21 to 42 years). Ubiquitin-stained dotlike deposits (Ub-dots) and diffuse extracellular plaques containing the beta-amyloid (Aβ) fragment of the amyloid precursor protein (Aβ plaque) were both increased significantly in the hippocampal formation of older subjects. In subjects with AIDS, Ub-dots were increased whereas Aβ plaque counts were not significantly different. Western blotting confirmed that high-molecular-weight ubiquitin-protein conjugates (HMW-Ub-conj) were increased in AIDS. The band intensity of one HMW-Ub-conj species with an approximate molecular mass of 145 kDa was correlated significantly with increased acute phase inflammatory protein (α-1-antichymotrypsin) and decreased synaptophysin and growth-associated protein-43 band intensities. These results raise the possibility that HIV-related brain inflammation disturbs neuronal protein turnover through the ubiquitin-proteasome apparatus, and might increase the prevalence of age-associated neurodegenerative diseases by decreasing synaptic protein turnover through the proteasome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adle-Biassette H, Chretien F, Wingertsmann L, Hery C, Ereau T, Scaravilli F, Tardieu M, Gray F (1999). Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathol Appl Neurobiol 25: 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Agarwal S, Sohal RS (1994). Aging and proteolysis of oxidized proteins. Arch Biochem Biophys 309: 24–28.

    Article  CAS  PubMed  Google Scholar 

  • Ageta H, Kato A, Fukazawa Y, Inokuchi K, Sugiyama H (2001). Effects of proteasome inhibitors on the synaptic localization of Vesl-1S/Homer-1a proteins. Brain Res Mol Brain Res 97: 186–189.

    Article  CAS  PubMed  Google Scholar 

  • An SF, Giometto B, Groves M, Miller RF, Beckett AA, Gray F, Tavolato B, Scaravilli F (1997). Axonal damage revealed by accumulation of beta-APP in HIV-positive individuals without AIDS. J Neuropathol Exp Neurol 56: 1262–1268.

    Article  CAS  PubMed  Google Scholar 

  • Anderson JP, Esch FS, Keim PS, Sambamurti K, Lieberburg I, Robakis NK (1991). Exact cleavage site of Alzheimer amyloid precursorinneuronal PC-12 cells.Neurosci Lett 128: 126–128.

    CAS  Google Scholar 

  • Baker RT, Tobias JW, Varshavsky A (1992). Ubiquitinspecific proteases of Saccharomyces cerevisiae. Cloning of UBP2 and UBP3, and functional analysis of the UBP gene family. J Biol Chem 267: 23364–23375.

    CAS  PubMed  Google Scholar 

  • Band GP, Ridderinkhof KR, Segalowitz S (2002). Explaining neurocognitive aging: is one factor enough? Brain Cogn 49: 259–267.

    Article  PubMed  Google Scholar 

  • Bence NF, Sampat RM, Kopito RR (2001). Impairment of the ubiquitin-proteasome system byprotein aggregation. Science 292: 1552–1555.

    Article  CAS  PubMed  Google Scholar 

  • Bennett MC, Bishop JF, Leng Y, Chock PB, Chase TN, Mouradian MM (1999). Degradation of alpha-synuclein by proteasome. J Biol Chem 274: 33855–33858.

    Article  CAS  PubMed  Google Scholar 

  • Bulteau AL, Szweda LI, Friguet B (2002). Age-dependent declines in proteasome activity in the heart. Arch Biochem Biophys 397: 298–304.

    Article  CAS  PubMed  Google Scholar 

  • Burbea M, Dreier L, Dittman JS, Grunwald ME, Kaplan JM (2002). Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35: 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Buttner C, Sadtler S, Leyendecker A, Laube B, Griffon N, Betz H, Schmalzing G (2001). Ubiquitination precedes internalization and proteolytic cleavage of plasma membrane-bound glycine receptors. J Biol Chem 276: 42978–42985.

    Article  CAS  PubMed  Google Scholar 

  • Carrard G, Bulteau AL, Petropoulos I, Friguet B (2002). Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 34: 1461–1474.

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Ernst T, Leonido-Yee M, Witt M, Speck O, Walot I, Miller EN (1999). Highly active antiretroviral therapy reverses brain metabolite abnormalities in mild HIV dementia. Neurology 53: 782–789.

    CAS  PubMed  Google Scholar 

  • Chapman AP, Courtney SC, Smith SJ, Rider CC, Beesley PW (1992). Ubiquitin immunoreactivity of multiple polypeptides in rat brain synaptic membranes. Biochem Soc Trans 20: 155S.

    CAS  PubMed  Google Scholar 

  • Chapman AP, Smith SJ, Rider CC, Beesley PW (1994). Multiple ubiquitin conjugates are present in rat brain synaptic membranes and postsynaptic densities. Neurosci Lett 168: 238–242.

    Article  CAS  PubMed  Google Scholar 

  • Chung KK, Dawson VL, Dawson TM (2001). The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends Neurosci 24: S7-S14.

    Article  CAS  PubMed  Google Scholar 

  • Davies KJ (2001). Degradation of oxidized proteins by the 20S proteasome. Biochimie 83: 301–310.

    Article  CAS  PubMed  Google Scholar 

  • DiAntonio A, Haghighi AP, Portman SL, Lee JD, Amaranto AM, Goodman CS (2001). Ubiquitination-dependent mechanisms regulate synaptic growth and function. Nature 412: 449–452.

    Article  CAS  PubMed  Google Scholar 

  • Dickson DW (1997). The pathogenesis of senile plaques. J Neuropathol Exp Neurol 56: 321–339.

    Article  CAS  PubMed  Google Scholar 

  • Dickson DW, Wertkin A, Kress Y, Ksiezak-Reding H, Yen SH (1990). Ubiquitin immunoreactive structures in normal human brains. Distribution and developmental aspects. Lab Invest 63: 87–99.

    CAS  PubMed  Google Scholar 

  • Dimakopoulos AC, Mayer RJ (2002). Aspects of neurodegeneration in the canine brain. J Nutr 132: 1579S-1582S.

    CAS  PubMed  Google Scholar 

  • Dore GJ, Correll PK, Li Y, Kaldor JM, Cooper DA, Brew BJ (1999). Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS 13: 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  • Dougherty RH, Skolasky RL Jr, McArthur JC (2002). Progression of HIV-associated dementia treated with HAART. AIDS Read 12: 69–74.

    PubMed  Google Scholar 

  • Ehlers MD (2003). Ubiquitin and synaptic dysfunction: ataxic mice highlight new common themes in neurological disease. Trends Neurosci 26: 4–7.

    Article  CAS  PubMed  Google Scholar 

  • Esiri MM, Biddolph SC, Morris CS (1998). Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65: 29–33.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo-Pereira ME, Li Z, Jansen M, Rockwell P (2002). N-acetylcysteine and celecoxib lessen cadmium cytotoxicity which is associated with cyclooxygenase-2 upregulation in mouse neuronal cells. J Biol Chem 277: 25283–25289.

    Article  CAS  PubMed  Google Scholar 

  • Gelman BB, Wolf DA, Olano JP, Linthicum LC (1996). Incarceration and the acquired immunodeficiency syndrome: autopsy results in Texas prison inmates. Hum Pathol 27: 1282–1287.

    Article  CAS  PubMed  Google Scholar 

  • Glass JD, Fedor H, Wesselingh SL, McArthur JC (1995). Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia. Ann Neurol 38: 755–762.

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Takahashi R, Araki S, Nakamoto H (2002). Dietary restriction initiated in late adulthood can reverse age-related alterations of protein and protein metabolism. Ann N Y Acad Sci 959: 50–56.

    Article  CAS  PubMed  Google Scholar 

  • Goto S, Takahashi R, Kumiyama AA, Radak Z, Hayashi T, Takenouchi M, Abe R (2001). Implications of protein degradation in aging. Ann N Y Acad Sci 928: 54–64.

    Article  CAS  PubMed  Google Scholar 

  • Gray F, Chretien F, Vallat-Decouvelaere AV, Scaravilli F (2003). The changing pattern of HIV neuropathology in the HAART era. J Neuropathol Exp Neurol 62: 429–440.

    PubMed  Google Scholar 

  • Grune T (2000). Oxidative stress, aging and the proteasomal system. Biogerontology 1: 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Hegde AN, DiAntonio A (2002). Ubiquitin and the synapse. Nat Rev Neurosci 3: 854–861.

    Article  CAS  PubMed  Google Scholar 

  • Hogg RS, O’Shaughnessy MV, Gataric N, Yip B, Craib K, Schechter MT, Montaner JS (1997). Decline in deaths from AIDS due to new antiretrovirals. Lancet 349: 1294.

    Article  CAS  PubMed  Google Scholar 

  • Izycka-Swieszewska E, Zoltowska A, Rzepko R, Gross M, Borowska-Lehman J (2000). Vasculopathy and amyloid beta reactivity in brains of patients with acquired immunedeficiency (AIDS). Folia Neuropathol 38: 175–182.

    CAS  PubMed  Google Scholar 

  • Jellinger KA, Setinek U, Drlicek M, Bohm G, Steurer A, Lintner F (2000). Neuropathology and general autopsy findings in AIDS during the last 15 years. Acta Neuropathol (Berl) 100: 213–220.

    Article  CAS  Google Scholar 

  • Jiang YH, Armstrong D, Albrecht U, Atkins CM, Noebels JL, Eichele G, Sweatt JD, Beaudet AL (1998). Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21: 799–811.

    Article  CAS  PubMed  Google Scholar 

  • Kanemaru K, Meckelein B, Marshall DC, Sipe JD, Abraham CR (1996). Synthesis and secretion of active alpha 1-antichymotrypsin by murine primary astrocytes. Neurobiol Aging 17: 767–771.

    Article  CAS  PubMed  Google Scholar 

  • Keck S, Nitsch R, Grune T, Ullrich O (2003). Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85: 115–122.

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Gee J, Ding Q (2002). The proteasome in brain aging. Ageing Res Rev 1: 279–293.

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Hanni KB, Kindy MS (2000a). Oxidized highdensity lipoprotein induces neuron death. Exp Neurol 161: 621–630.

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000b). Impaired proteasome function in Alzheimer’s disease. J Neurochem 75: 436–439.

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Hanni KB, Markesbery WR (2000c). Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev 113: 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Huang FF, Markesbery WR (2000d). Decreased levels of proteasome activity and proteasome expression in aging spinal cord. Neuroscience 98: 149–156.

    Article  CAS  PubMed  Google Scholar 

  • Keller JN, Markesbery WR (2000). Proteasome inhibition results in increased poly-ADP-ribosylation: implications for neuron death. J Neurosci Res 61: 436–442.

    Article  CAS  PubMed  Google Scholar 

  • Klimaschewski L (2003). Ubiquitin-dependent proteolysis in neurons. News Physiol Sci 18: 29–33.

    CAS  PubMed  Google Scholar 

  • Lennox G, Lowe J, Morrell K, Landon M, Mayer RJ (1988). Ubiquitin is a component of neurofibrillary tangles in a variety of neurodegenerative diseases. Neurosci Lett 94: 211–217.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Jansen M, Pierre SR, Figueiredo-Pereira ME (2003). Neurodegeneration: linking ubiquitin/proteasome pathway impairment with inflammation. Int J Biochem Cell Biol 35: 547–552.

    Article  CAS  PubMed  Google Scholar 

  • Licastro F, Campbell IL, Kincaid C, Veinbergs I, Van Uden E, Rockenstein E, Mallory M, Gilbert JR, Masliah E (1999). A role for apoE in regulating the levels of alpha-1-antichymotrypsin in the aging mouse brain and in Alzheimer’s disease. Am J Pathol 155: 869–875.

    CAS  PubMed  Google Scholar 

  • Lopez-Salon M, Alonso M, Vianna MR, Viola H, Mello eSouza T, Izquierdo I, Pasquini JM, Medina JH (2001). The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur J Neurosci 14: 1820–1826.

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L, Billett M, Landon M, Mayer RJ (1988). Ubiquitin is a common factor in intermediate filament inclusion bodies ofdiverse type inman, including thoseof Parkinson’s disease, Pick’s disease, and Alzheimer’s disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease. J Pathol 155: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Mayer J, Landon M, Layfield R (2001). Ubiquitin and the molecular pathology of neurodegenerative diseases. Adv Exp Med Biol 487: 169–186.

    CAS  PubMed  Google Scholar 

  • Ma J, Wollmann R, Lindquist S (2002). Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298: 1781–1785.

    Article  CAS  PubMed  Google Scholar 

  • Mahler HR (1969). Protein turnover and synthesis: relation to synaptic function. Adv Biochem Psychopharmacol 1: 49–69.

    CAS  PubMed  Google Scholar 

  • Marzban G, Grillari J, Reisinger E, Hemetsberger T, Grabherr R, Katinger H (2002). Age-related alterations in the protein expression profile of C57BL/6J mouse pituitaries. Exp Gerontol 37: 1451–1460.

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, DeTeresa RM, Mallory ME, Hansen LA (2000). Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS 14: 69–74.

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, Achim CL, McCutchan JA, Nelson JA, Atkinson JH, Grant I (1997). Dendritic injury is a pathological substrate for human immunodeficiency virusrelated cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol 42: 963–972.

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2001). Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging 22: 799–809.

    Article  CAS  PubMed  Google Scholar 

  • Merker K, Grune T (2000). Proteolysis of oxidised proteins and cellular senescence. Exp Gerontol 35: 779–786.

    Article  CAS  PubMed  Google Scholar 

  • Merker K, Stolzing A, Grune T (2001). Proteolysis, caloric restriction and aging. Mech Ageing Dev 122: 595–615.

    Article  CAS  PubMed  Google Scholar 

  • Merrill JE, Koyanagi Y, Zack J, Thomas L, Martin F, Chen IS (1992). Induction of interleukin-1 and tumor necrosis factor alpha in brain cultures by human immunodeficiency virus type 1. J Virol 66: 2217–2225.

    CAS  PubMed  Google Scholar 

  • Mezey E, Dehejia A, Harta G, Papp MI, Polymeropoulos MH, Brownstein MJ (1998). Alpha synucleininneurodegenerative disorders: murderer or accomplice? Nat Med 4: 755–757.

    Article  CAS  PubMed  Google Scholar 

  • Mirra SS, Hart MN, Terry RD (1993). Making the diagnosis of Alzheimer’s disease. A primer for practicing pathologists. Arch Pathol Lab Med 117: 132–144.

    CAS  PubMed  Google Scholar 

  • Mizuno Y, Hattori N, Matsumine H (1998). Neurochemical and neurogenetic correlates of Parkinson’s disease. J Neurochem 71: 893–902.

    Article  CAS  PubMed  Google Scholar 

  • Morgello S, Mahboob R, Yakoushina T, Khan S, Hague K (2002). Autopsy findings in a human immunodeficiency virus-infected population over 2 decades: influences of gender, ethnicity, risk factors, and time. Arch Pathol Lab Med 126: 182–190.

    PubMed  Google Scholar 

  • Navia BA, Cho ES, Petito CK, Price RW (1986). The AIDS dementia complex: II. Neuropathology. Ann Neurol 19: 525–535.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Takahashi R, Goto S (1995). Age-related accumulation of high-molecular-weight ubiquitin protein conjugates in mouse brains. J Gerontol A Biol Sci Med Sci 50: B277-B281.

    CAS  PubMed  Google Scholar 

  • Pappolla MA, Omar R, Saran B (1989). The “normal” brain. “Abnormal” ubiquitinilated deposits highlight an age-related protein change. Am J Pathol 135: 585–591.

    CAS  PubMed  Google Scholar 

  • Petito CK (1993). Neuropathology of Acquired Immunodeficiency Syndrome. In: Principles and practice of neuropathology. Nelson JS, Parisi JE, Schochet SS (eds). St. Louis: Mosby-Year Book, pp 88–108.

    Google Scholar 

  • Raasi S, Schmidtke G, de Giuli R, Groettrup M (1999). A ubiquitin-like protein which is synergistically inducible by interferon-gamma and tumor necrosis factor-alpha. Eur J Immunol 29: 4030–4036.

    Article  CAS  PubMed  Google Scholar 

  • Roberts ES, Zandonatti MA, Watry DD, Madden LJ, Henriksen SJ, Taffe MA, Fox HS (2003). Induction of pathogenic sets of genes in macrophages and neurons in NeuroAIDS. Am J Pathol 162: 2041–2057.

    CAS  PubMed  Google Scholar 

  • Ryazanov AG, Nefsky BS (2002). Protein turnover plays a key role in aging. Mech Ageing Dev 123: 207–213.

    Article  CAS  PubMed  Google Scholar 

  • Sacktor N, Lyles RH, Skolasky R, Kleeberger C, Selnes OA, Miller EN, Becker JT, Cohen B, McArthur JC (2001). HIV-associated neurologic disease incidence changes: Multicenter AIDS Cohort Study, 1990–1998. Neurology 56: 257–260.

    CAS  PubMed  Google Scholar 

  • Sacktor NC, Lyles RH, Skolasky RL, Anderson DE, McArthur JC, McFarlane G, Selnes OA, Becker JT, Cohen B, Wesch J, Miller EN (1999). Combination antiretroviral therapy improves psychomotor speed performance in HIV-seropositive homosexual men. Multicenter AIDS Cohort Study (MACS). Neurology 52: 1640–1647.

    CAS  PubMed  Google Scholar 

  • Sacktor NC, Skolasky RL, Lyles RH, Esposito D, Selnes OA, McArthur JC (2000). Improvement in HIV-associated motor slowing after antiretroviral therapy including protease inhibitors. J NeuroVirol 6: 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Schreiber G, Aldred AR (1993). Extrahepatic synthesis of acute phase proteins. In: Acute phase proteins: molecular biology, biochemistry, and clinical applications. Mackiewicz A, Kushner I, Baumann H (eds). Boca Raton: CRC Press, pp 39–76.

    Google Scholar 

  • Sherman MY, Goldberg AL (2001). Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29: 15–32.

    Article  CAS  PubMed  Google Scholar 

  • Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25: 302–305.

    Article  CAS  PubMed  Google Scholar 

  • Stolzing A, Grune T (2001). The proteasome and its function in the ageing process. Clin Exp Dermatol 26: 566–572.

    Article  CAS  PubMed  Google Scholar 

  • Taylor JP, Tanaka F, Robitschek J, Sandoval CM, Taye A, Markovic-Plese S, Fischbeck KH (2003). Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum Mol Genet 12: 749–757.

    Article  CAS  PubMed  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30: 572–580.

    Article  CAS  PubMed  Google Scholar 

  • Thal DR, Rub U, Schultz C, Sassin I, Ghebremedhin E, Del Tredici K, Braak E, Braak H (2000). Sequence of Abetaprotein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59: 733–748.

    CAS  PubMed  Google Scholar 

  • Tozzi V, Balestra P, Galgani S, Narciso P, Sampaolesi A, Antinori A, Giulianelli M, Serraino D, Ippolito G (2001). Changes in neurocognitive performance in a cohort of patients treated with HAART for 3 years. J Acquir Immune Defic Syndr 28: 19–27.

    CAS  PubMed  Google Scholar 

  • Tsuji T, Shimohama S (2002). Protein degradation in Alzheimer’s disease and aging of the brain. Prog Mol Subcell Biol 29: 43–60.

    CAS  PubMed  Google Scholar 

  • Vogelgesang S, Cascorbi I, Schroeder E, Pahnke J, Kroemer HK, Siegmund W, Kunert-Keil C, Walker LC, Warzok RW (2002). Deposition of Alzheimer’s beta-amyloid is inversely correlated with P-glycoprotein expression in the brains of elderly non-demented humans. Pharmacogenetics 12: 535–541.

    Article  CAS  PubMed  Google Scholar 

  • Walker DG, Kim SU, McGeer PL (1995). Complement and cytokine gene expression in cultured microglial derived from postmortem human brains. J Neurosci Res 40: 478–493.

    Article  CAS  PubMed  Google Scholar 

  • Ward WF (2000). The relentless effects of the aging process on protein turnover. Biogerontology 1: 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Wiley CA, Achim C (1994). Human immunodeficiency virus encephalitis is the pathological correlate of dementia in acquired immunodeficiency syndrome. Ann Neurol 36: 673–676.

    Article  CAS  PubMed  Google Scholar 

  • Williams KC, Hickey WF (2002). Central nervous system damage, monocytes and macrophages, and neurological disorders in AIDS. Annu Rev Neurosci 25: 537–562.

    Article  CAS  PubMed  Google Scholar 

  • Wilson SM, Bhattacharyya B, Rachel RA, Coppola V, Tessarollo L, Householder DB, Fletcher CF, Miller RJ, Copeland NG, Jenkins NA (2002). Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nat Genet 32: 420–425.

    Article  CAS  PubMed  Google Scholar 

  • Wolf DA, Dholakia SR, Keherly MJ, Rodriguez-Wolf MG, Cloyd MW, Gelman BB (1997). Proteolysis in the myelopathy of acquired immunodeficiency syndrome: preferential loss of the C-8 component of myelin basic protein. Lab Invest 77: 513–523.

    CAS  PubMed  Google Scholar 

  • Wyss-Coray T, Mucke L (2002). Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35: 419–432.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Sugihara S, Ogawa A, Oshima N, Ihara Y (2001). Alzheimer beta amyloid deposition enhanced by apoE epsilon4 gene precedes neurofibrillary pathology in the frontal association cortex of nondemented senior subjects. J Neuropathol Exp Neurol 60: 731–739.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin B. Gelman.

Additional information

This work was supported by the National Institutes of Health R24-MH59656, R24-NS45491, R01-DC04749, and R01-MH69200.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gelman, B.B., Schuenke, K. Brain aging in acquired immunodeficiency syndrome: Increased ubiquitin-protein conjugate is correlated with decreased synaptic protein but not amyloid plaque accumulation. Journal of NeuroVirology 10, 98–108 (2004). https://doi.org/10.1080/13550280490279816

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280490279816

Keywords

Navigation