Skip to main content
Log in

The reliability of morphological traits in the differentiation of Bombus terrestris and B. lucorum (Hymenoptera: Apidae)

Fiabilité des caractères morphologiques dans la différenciation de Bombus terrestris et B. lucorum (Hymenoptera : Apidae)

Die Verlässlichkeit von morphologischen Merkmalen bei der Unterscheidung von Bombus terrestris und B. lucorum (Hymenoptera: Apidae)

  • Original Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

The bumblebees of the subgenus Bombus sensu strictu are a notoriously difficult taxonomic group because identification keys are based on the morphology of the sexuals, yet the workers are easily confused based on morphological characters alone. Based on a large field sample of workers putatively belonging to either B. terrestris or B. lucorum, we here test the applicability and accuracy of a frequently used taxonomic identification key for continental European bumblebees and mtDNA restriction fragment length polymorphism (RFLP) that are diagnostic for queens to distinguish between B. terrestris and B. lucorum, two highly abundant but easily confused species in Central Europe. Bumblebee workers were grouped into B. terrestris and B. lucorum either based on the taxonomic key or their mtDNA RFLP. We also genotyped all workers with six polymorphic microsatellite loci to show which grouping better matched a coherent Hardy-Weinberg population. Firstly we could show that the mtDNA RFLPs diagnostic in queens also allowed an unambiguous discrimination of the two species. Moreover, the population genetic data confirmed that the mtDNA RFLP method is superior to the taxonomic tools available. The morphological key provided 45% misclassifications for B. lucorum and 5% for B. terrestris. Hence, for studies on B. terrestris we recommend to double check species identity with mtDNA RFLP analysis, especially when conducted in Central Europe.

Zusammenfassung

Die Artbestimmung bei Hummelarbeiterinnen der Untergattung Bombus sensu strictu mittles morphologischer Merkmale hat sich wiederholt als schwierig erwiesen, da morphologische Bestimmungsmerkmale zwar bei Geschlechtstieren (Königinnen und Drohnen) eine gute Unterscheidung zulassen, bei Arbeiterinnen jedoch häufig uneindeutig sind.

Basierend auf einer grossen Freilandstichprobe von B. terrestris / B. lucorum Arbeiterinnen, zwei häufige, aber schwer zu unterscheidende mitteleuropäische Arten, testen wir hier die Anwendbarkeit und diagnostische Verlässlichkeit zweier Bestimmungsmethoden. Zum Einen, die eines häufig genutzten Bestimmungsschlüssels für mitteleuropäische Hummeln, zum Anderen, mtDNA Restriktions-Fragmentlängen-Polymorphismen (RFLP), die eine Artunterscheidung bei Königinnen von B. terrestris und B. lucorum erlauben. Die Hummelarbeiterinnen wurden dabei basierend auf entweder morphologischen Merkmalen oder anhand ihrer mtDNA RFLPs zu B. terrestris oder B. lucorum zugeordnet. Alle Individuen wurden an sechs Mikrosatelliten-Loci genotypisiert um zu testen, welche der beiden Artgruppierungen (Morphologie- oder mtDNA-basiert) besser mit einer zu erwartenden Hardy-Weinberg Population übereinstimmt.

Zum Ersten konnten wir zeigen, dass die für Königinnen diagnostischen mtDNA RFLPs auch bei Arbeiterinnen eine eindeutige Artbestimmung zulassen. Darüber hinaus konnten wir durch unsere populationsgenetischen Analysen bestätigen, dass die Artbestimmung mittels mtDNA RFLPs der durch morphologische Merkmale in Präzision deutlich überlegen ist. Die Artbestimmung mittels des Bestimmungsschlüssels führte zu 45% Fehlbestimmungen bei B. lucorum, Fehlbestimmungen bei B. terrestris wurden in 5% aller Fälle gefunden. Folglich empfehlen wir die verlässliche Artbestimmung mittels genetischer Methoden bei Studien an B. terrestris, vor allem, wenn diese in Mitteleuropa durchgeführt werden und populationsgenetische Untersuchungen beinhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertsch A. (1997) Abgrenzung der Hummel-Arten Bombus cryptarum und B. lucorum mittels männlicher Labialdrüsen-Sekrete und morphologischer Merkmale (Hymenoptera, Apidae), Entomol. Gen. 22, 129–145.

    Google Scholar 

  • Bertsch A., Schweer H., Titze A., Tanaka H. (2005) Male labial gland secretions and mitochondrial DNA markers support species status of Bombus cryptarum and B. magnus (Hymenoptera: Apidae), Insect. Soc. 52, 45–54.

    Article  Google Scholar 

  • Chapman R.E., Wang J., Bourke A.F.G. (2003) Genetic analysis of spatial foraging patterns and resource sharing in bumblebee pollinators, Mol. Ecol. 12, 2801–2808.

    Article  PubMed  CAS  Google Scholar 

  • Chittka L., Gumpert A., Kunze J. (1997) Foraging dynamics of bumble bees: correlates of movements within and between plant species, Behav. Ecol. 8, 239–249.

    Article  Google Scholar 

  • Darvill B., Knight M.E., Goulson D. (2005) Use of genetic markers to quantify bumblebee foraging range and nest density, Oikos 107, 471–478.

    Article  Google Scholar 

  • Dramstad W.E. (1996) Do bumblebees (Hymenoptera, Apidae) really forage close to their nests? J. Insect Behav. 9, 163–182.

    Article  Google Scholar 

  • Dramstad W.E., Fry G. (1995) Foraging activity of bumblebees (Bombus) in relation to flower resources on arable land, Agr. Ecosyst. Environ. 53, 123–135.

    Article  Google Scholar 

  • Dramstad W.E., Fry G.L.A., Schaffer M.J. (2003) Bumblebee foraging — in closer really better? Agr. Ecosyst. Environ. 95, 349–357.

    Article  Google Scholar 

  • Duchateau M.J., Velthuis H.H.W., Boomsma J.J. (2004) Sex ratio variation in the bumblebee Bombus terrestris, Behav. Ecol. 15, 71–82.

    Article  Google Scholar 

  • Ellis J.S., Knight M.E., Goulson D. (2005) Delineating species for conservation using mitochondrial sequence data: the taxonomic status of two problematic Bombus species (Hymenoptera: Apidae), J. Insect Conserv. 9, 75–83.

    Article  Google Scholar 

  • Ellis J.S., Knight M.E., Darvill B., Goulson D. (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae), Mol. Ecol. 15, 4375–4386.

    Article  PubMed  CAS  Google Scholar 

  • Estoup A., Solignac M., Harry M., Cornuet J.-M. (1993) Characterization of (GT)n and (CT)n microsatellites in two insect species Apis mellifera and Bombus terrestris, Nucleic Acids Research 21, 1427–1431.

    Article  PubMed  CAS  Google Scholar 

  • Estoup A., Taillez C., Cornuet J.-M., Solignac M. (1995) Size homoplasy and mutationalprocesses of interrupted microsatellites in Apidae species, Apis mellifera and Bombus terrestris, Mol. Biol. Evol. 12, 1074–1084.

    PubMed  CAS  Google Scholar 

  • Falush D., Stephens M., Prichard J.K. (2003) Interference of population structure using multilocus genotype data: linked loci and correlated allele frequencies, Genetics 164, 1567–1587.

    PubMed  CAS  Google Scholar 

  • Fussell M., Corbet S.A. (1992) Flower usage by bumblebees: A basis for forage plant management, J. Appl. Ecol. 29, 451–465.

    Article  Google Scholar 

  • Gerloff C.U., Schmid-Hempel P. (2005) Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera, Apidae), Oikos 111, 67–80.

    Article  Google Scholar 

  • Goudet J. (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics, J. Hered. 86, 485–486.

    Google Scholar 

  • Goulson D., Stout J.D. (2001) Homing ability of the bumblebee Bombus terrestris (Hymenoptera, Apidae), Apidologie 32, 105–111.

    Article  Google Scholar 

  • Hanley M.E., Franco M., Pichon S., Darvill B., Goulson D. (2008) Breeding system, pollinator choice and variation in pollen quality in British herbaceous plants, Funct. Ecol. 22, 592–598.

    Article  Google Scholar 

  • Hartl D.L., Clarke A.G. (1997) Principles of population genetics, 3rd ed., Sinauer Associates, Inc.

  • Herrmann F., Westphal C., Moritz R.F.A., Steffan-Dewenter I. (2007) Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes, Mol. Ecol. 16, 1167–1178.

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski S.T. (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness, Mol. Ecol. Notes 5, 187–189.

    Article  CAS  Google Scholar 

  • Kraus F.B., Wolf S., Moritz R.F.A. (2009) Male flight distance and population sub-structure in the bumblebee Bombus terrestris, J. Anim. Ecol. 78, 247–252.

    Article  PubMed  CAS  Google Scholar 

  • Kwon Y.J., Saeed S. (2003) Effect of temperature on the foraging activity of Bombus terrestris L. (Hymenoptera, Apidae) on greenhouse hot pepper (Capsicum annuum L.), Appl. Entomol. Zool. 38, 275–280.

    Article  Google Scholar 

  • Mauss V. (1994) Bestimmungsschlüssel für Hummeln, Deutscher Jugendbund für Naturbeobachtungen (DJN), Hamburg.

    Google Scholar 

  • Meek B., Loxton D., Sparks T., Pywell R., Pickett H., Nowakowski M. (2002) The effect of arable field margin composition on invertebrate biodiversity, Biol. Conserv. 106, 259–271.

    Article  Google Scholar 

  • Michener C.D. (2000) Bees of the world, John Hopkins University Press, Maryland, USA.

    Google Scholar 

  • Murray T.E., Fitzpatrick U., Brown M.J.F., Paxton R.J. (2008) Cryptic species diversity in a widespread bumble bee complex revealed using mitochondrial DNA RFLPs, Conserv. Gen. 9, 653–666.

    Article  CAS  Google Scholar 

  • Osborne J.L., Martin A.P., Carreck N.L., Swain J.L., Knight M.E., Goulson D., Hale R.J., Sanderson R.A. (2008) Bumblebee flight distances in relation to the forage landscape, J. Anim. Ecol. 77, 406–415.

    Article  PubMed  Google Scholar 

  • Pritchard J.K., Stephens M., Donnelly P. (2000) Interference of population structure from multilocus genotype data, Genetics 155, 945–959.

    PubMed  CAS  Google Scholar 

  • Raine N.E., Chittka L. (2008) The correlation of learning speed and natural foraging success in bumblebees, Proc. R. Soc. London B 275, 803–808.

    Article  Google Scholar 

  • Raine N.E., Rossmo D.K., Le Comber S.C. (2009) Geographic profiling applied to testing models of bumblebee foraging, J. R. Soc. Interface 6, 307–319.

    Article  PubMed  Google Scholar 

  • Saville N.M., Dramstad W.E., Fry G.L.A., Corbet S.A. (1997) Bumblebee movement in a fragmented agricultural landscape, Agr. Ecosyst. Environ. 61, 145–154.

    Article  Google Scholar 

  • Schmid-Hempel P., Durrer S. (1991) Parasites, floral resources and reproduction in natural populations of bumblebees, Oikos 62, 342–350.

    Article  Google Scholar 

  • Tanaka H., Roubik D.W., Kato M., Liew F., Gunsalam G. (2001) Phylogenetic position of Apis nuluensis of northern Borneo and phylogeography of A. cerana as inferred from mitochondrial DNA sequences, Insect. Soc. 48, 44–51.

    Article  Google Scholar 

  • von Hagen E. (1991) Hummeln: bestimmen, ansiedeln, vermehren, schützen, 3rd ed., Augsburg: Natur-Verlag.

    Google Scholar 

  • Walsh P.S., Metzger D.A., Higuchi R. (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material, Biotechniques 10, 506–512.

    PubMed  CAS  Google Scholar 

  • Wang J. (2004) Sibship reconstruction from genetic data with typing errors, Genetics 166, 1963–1979.

    Article  PubMed  Google Scholar 

  • Waser N.M., Chittka L., Price M.V., Williams N.M., Ollerton J. (1996) Generalization in pollination systems, and why it matters, Ecology 77, 1043–1060.

    Article  Google Scholar 

  • Westphal C., Steffan-Dewenter I., Tscharntke T. (2006) Bumblebees experience landscapes at different spatial scales: possible implications for coexistence, Oecologia 149, 289–300.

    Article  PubMed  Google Scholar 

  • Widmer A., Schmid-Hempel P., Estoup A., Scholl A. (1998) Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira, Heredity 81, 568–572.

    Article  Google Scholar 

  • Williams P.H. (1994) Phylogenetic relationships among bumble bees (Bombus Latr.): a reappraisal of morphological evidence, Syst. Entomol. 19, 327–344.

    Article  Google Scholar 

  • Williams P.H. (1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini), Bull. Nat. Hist. Museum (Entomology) 67, 79–152.

    Google Scholar 

  • Wolf S., Moritz R.F.A. (2008) Foraging distance in Bombus terrestris (Hymenoptera: Apidae), Apidologie 39, 419–427.

    Article  Google Scholar 

  • Wolf S., Moritz R.F.A. (2009) Pollination potential of bumblebee (Bombus spec.) drones (Hymenoptera: Apidae), submitted.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Wolf.

Additional information

Manuscript editor: Stefan Fuchs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, S., Rohde, M. & Moritz, R.F.A. The reliability of morphological traits in the differentiation of Bombus terrestris and B. lucorum (Hymenoptera: Apidae). Apidologie 41, 45–53 (2010). https://doi.org/10.1051/apido/2009048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2009048

Navigation