Skip to main content

Advertisement

Log in

Biodiversity, conservation and current threats to European honeybees

Biodiversité, conservation et menaces actuelles pesant sur les abeilles domestiques européennes

Biodiversität, Naturschutz und aktuelle Bedrohungen der europäischen Honigbienen

  • Review Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Europe harbours several endemic honeybee (Apis mellifera) subspecies. Yet the distribution of these subspecies is nowadays also much influenced by beekeeping activities. Large scale migratory beekeeping and trade in queens, coupled with the promiscuous mating system of honeybees, have exposed native European honeybees to increasing introgressive hybridization with managed non-native subspecies, which may lead to the loss of valuable combinations of traits shaped by natural selection. Other threats to European honeybees are factors that have caused a progressive decline in A. mellifera throughout the world in recent years, leading to large economic losses and jeopardizing ecosystem functioning. We review the biodiversity of European honeybees and summarize the management and conservation strategies employed by different countries. A comprehensive picture of the beekeeping industry in Europe is also provided. Finally we evaluate the potential threats affecting the biodiversity of European honeybee populations and provide some perspectives for future research.

Zusammenfassung

Die Unterarten der Honigbienen wurden sowohl mit morphologischen (Box 1) als auch mit molekulargenetischen (Box 2 und 3) Methoden untersucht. Die in Europa vorkommenden elf Unterarten (Abb. 1) werden in vier evolutiven Abstammungslinien eingeteilt. In den entsprechenden Verbreitungsgebieten sind die dazugehörenden Unterarten unterschiedlichen Klima- und Habitatsbedingungen sowie anthropogenen Einflüssen ausgesetzt. Unser erstes Ziel ist es, die Biodiversität der europäischen Honigbienen zu beschreiben und die Strategien zum Schutz der Honigbienen in den einzelnen Ländern zusammenzufassen. Hybridisierungsprozesse wurden vor allem auf der iberischen, italienischen und der Balkan-Halbinsel festgestellt, wohingegen natürliche (aufgrund von Genfluss durch die Mehrfachpaarung der Königin) und durch imkerliche Aktivitäten ausgelöste (durch die Einfuhr von Honigbienen-Unterarten außerhalb ihres natürlichen Verbreitungsgebietes) genetische Introgression in Zentral- und Osteuropa sowie auf Mittelmeerinseln beobachtet wurden. Verschiedene Naturschutzprogramme wurden auf europäischen Inseln (Dänemark, Spanien) und seit kurzem auch in anderen europäischen Ländern (Frankreich, Norwegen, Slowenien und Österreich) etabliert. Für einen sinnvollen Honigbienenschutz muss aber der Status der imkerlich gehaltenen Honigbienenpopulation in den jeweiligen Ländern mit berücksichtigt werden. Daher müssen zunächst detaillierte Informationen zur Imkerei in den einzelnen Ländern gesammelt werden, bevor zukünftige Naturschutzprogramme entwickelt werden (Abb. 2 und Tab. I in „supplementary data“). Auf dieser Grundlage werden zwei Hauptansätze für zukünftige Naturschutzrichtlinien vorgeschlagen: Beschränkung der Einfuhr von „überlegenen“ Unterarten in Gebiete, die bereits von nativen Honigbienenpopulationen besetzt sind sowie die Aufrechterhaltung der genetischen Diversität in natürlichen Honigbienenpopulationen. Immer mehr Faktoren wie veränderte Landnutzung, die Verbreitung von Krankheitserregern und Parasiten, der Einsatz von Pestiziden und Herbiziden (Tab. I) bedrohen die Honigbienen in Europa und gefährden damit auch die Funktion des Ökosystems durch eine unzureichende Bestäubung von Wild- und Kulturpflanzen.

Das vor kurzem aufgeschlüsselte Honigbienen-Genom bietet nun aber neue Möglichkeiten, auf molekularer Ebene die Genetik, Physiologie und das Verhalten der Honigbienen zu untersuchen. Molekulare Marker wie SNPs („Single Nucleotide Polymorphisms“) und Mikrosatelliten ermöglichen neue Einblicke in die Populationsstruktur der Honigbienen und die Analyse des Honigbienen-Proteoms wird uns zusätzlich Informationen über die Struktur, Funktion und Wechselwirkungen der von den jeweiligen Genen produzierten Proteine geben.

Eine abschließende Überlegung ist, dass der Honigbienenschutz eng mit der Aufrechterhaltung der Imkerei verbunden ist, die als zukunftsträchtiger Bestandteil der landwirtschaftlichen Praxis auch für die junge Generation attraktiv sein sollte. Für eine nachhaltige Unterstützung der Imkerei sollten die Berufsausbildung verbessert, moderne Betriebsweisen eingeführt, angewandte Forschung zur Bienenbiologie, Genetik und Krankheitsbekämpfung durchgeführt sowie sinnvolle Richtlinien zum Schutz wertvoller Ökosysteme umgesetzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrahamovich A.H., Atela O., De la Rúa P., Galián J. (2007) Assessment of the mitochondrial origin of honeybees from Argentina, J. Apic. Res. 46, 191–194.

    CAS  Google Scholar 

  • Adam B. (1983) In search of the best strains of bees, Dadant Sons, Hamilton Illinois.

    Google Scholar 

  • Aizen M.A., Feinsinger P. (1994) Forest fragmentation, pollination, and plant reproduction in a Chaco dry forest, Argentina, Ecology 75, 330–351.

    Google Scholar 

  • Alpatov W.W. (1929) Biometrical studies on variation and races of the honeybee Apis mellifera L., Rev. Biol. 4, 1–57.

    Google Scholar 

  • Arias M.C., Sheppard W.S. (1996) Molecular phylogenetics of honey bees subspecies (Apis mellifera L.), Mol. Phylogenet. Evol. 5, 557–566.

    PubMed  CAS  Google Scholar 

  • Arias M.C., Rinderer T.E., Sheppard W.S. (2006) Further characterization of honey bees from the Iberian Peninsula by allozyme, morphometric and mtDNA haplotype analyses, J. Apic. Res. 45, 188196.

    Google Scholar 

  • Badino G., Celebrano G., Manino A. (1983) Population structure and Mdh-1 locus variation in Apis mellifera ligustica, J. Hered. 74, 443–446.

    PubMed  CAS  Google Scholar 

  • Badino G., Celebrano G., Manino A., Longo S. (1985) Enzyme polymorphism in the Sicilian honey bee, Experientia 41, 752–754.

    CAS  Google Scholar 

  • Badino G., Celebrano G., Manino A., Ifantidis M.D. (1988) Allozyme variability in Greek honeybees (Apis mellifera L.), Apidologie 19, 377–386.

    Google Scholar 

  • Baer B., Heazlewood J.L., Taylor N.L., Eubel H., Millar A.H. (2009) The seminal fluid proteome of the honeybee Apis mellifera, Proteomics. DOI: 10.1002/pmic.200800708.

  • Bailey J., Scott-Dupree C., Harris R., Tolman J., Harris B. (2005) Contact and oral toxicity to honey bees (Apis mellifera) of agents registered for use for sweet corn insect control in Ontario, Canada, Apidologie 36, 623–633.

    CAS  Google Scholar 

  • Batley M., Hogendoorn K. (2009) Diversity and conservation status of native Australian bees, Apidologie 40, 347–354.

    Google Scholar 

  • Batra S.T.W. (1988) Automatic image analysis for rapid identification of Africanized honey bees, in: Needham G.R. (Ed.), Africanized honey bees and bee mites. Ellis Horwood Series in Entomology and Acariology, Halsted Press, New York, pp. 260–263.

    Google Scholar 

  • Baudry E., Solignac M., Garnery L., Gries M., Cornuet J.M., Koeniger N. (1998) Relatedness among honeybees (Apis mellifera) of a drone congregation area, Proc. R. Soc. Lond. B. 265, 2009–2014.

    Google Scholar 

  • Benjamin A., McCallum B. (2008) A World Without Bees, Guardian Books, 208 p.

  • Beye M., Gattermeier I., Hasselmann M., Gempe T., Schioett M., Baines J.F., Schlipalius D., Mougel F., Emore C., Rueppell O., Sirviö A., Guzmán-Novoa E., Hunt G., Solignac M., Page R.E. (2006) Exceptionally high levels of recombination across the honey bee genome, Genome Res. 16, 1339–1344.

    PubMed  CAS  Google Scholar 

  • Biesmeijer J.C., Roberts S.P.M., Reemer M., Ohlemuller R., Edwards M., Peeters T., Schaffers A.P., Potts S.G., Kleukers R., Thomas C.D., Settele J., Kunin W.E. (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands, Science 313, 351–354.

    PubMed  CAS  Google Scholar 

  • Bodur C., Kence M., Kence A. (2007) Genetic structure of honeybee, Apis mellifera L. (Hymenoptera: Apidae) populations of Turkey inferred from microsatellite analysis, J. Apic. Res. 46, 50–56.

    CAS  Google Scholar 

  • Bookstein F.L. (1991) Morphometric Tools for Landmark Data, Geometry and Biology, Cambridge University Press.

  • Bouga M., Kilias G., Harizanis P.C., Papasotiropoulos V., Alahiotis S. (2005a) Allozyme Variability and Phylogenetic Relationships in Honey Bee (Hymenoptera: Apidae: Apis mellifera) populations from Greece and Cyprus, Biochem. Genet. 43, 471–483.

    PubMed  CAS  Google Scholar 

  • Bouga M., Harizanis P.C., Kilias G., Alahiotis S. (2005b) Genetic divergence and phylogenetic relationships of honeybee Apis mellifera (Hymenoptera: Apidae) populations from Greece and Cyprus using PCR-RFLP analysis of three mtDNA segments, Apidologie 36, 335–344.

    CAS  Google Scholar 

  • Cánovas F., De la Rúa P., Serrano J., Galián J. (2008) Geographical patterns of mitochondrial DNA variation in Apis mellifera iberiensis (Hymenoptera: Apidae), J. Zool. Syst. Evol. Res. 46, 24–30.

    Google Scholar 

  • Carreck N.L. (2008) Are honey bees (Apis mellifera L.) native to the British Isles? J. Apic. Res. 47, 318–322.

    Google Scholar 

  • Cermak K., Kaspar F. (2000) A method of classifying honey bee races by their body characters, Pszcz. Zesz. Nauk. (XLIV) 2, 81–86.

    Google Scholar 

  • Chaline N., Ratnieks F.L.W., Burke T. (2002) Anarchy in the UK: Detailed genetic analysis of worker reproduction in a naturally occurring British anarchistic honeybee, Apis mellifera, colony using DNA microsatellites, Mol. Ecol. 11, 1795–1803.

    PubMed  CAS  Google Scholar 

  • Clarke K.E., Rinderer T.E., Franck P., Quezada-Euan J.G., Oldroyd B.P. (2001) The Africanization of honeybees (Apis mellifera L.) of the Yucatan: A study of a massive hybridization event across time, Evolution 56, 1462–1474.

    Google Scholar 

  • COAG (2007) Anuario Agrario: Apicultura, [online] http://194.30.12.92/rep_ficheros_web/ 208c4f87992370db4f614556778e04e7.pdf (accessed on 9 February 2009).

  • Comparini A., Biasiolo A. (1991) Genetic discrimination of Italian bee, Apis mellifera ligustica versus Carniolan bee, Apis mellifera carnica by allozyme variability analysis, Biochem. Syst. Ecol. 19, 189–194.

    CAS  Google Scholar 

  • Cornuet J.M., Fresnaye J. (1989) Étude biométrique de colonies d’abeilles d’Espagne et du Portugal, Apidologie 20, 93–101.

    Google Scholar 

  • Cornuet J.M., Garnery L. (1991) Mitochondrial-DNA variability in honeybees and its phylogeographic implications, Apidologie 22, 627–642.

    CAS  Google Scholar 

  • Cornuet J.M., Albisetti J., Mallet N., Fresnaye J. (1982) Étude biométrique d’une population d’abeilles landaises, Apidologie 13, 3–13.

    Google Scholar 

  • Cornuet J.M., Daoudi A., Chevalet C. (1986) Genetic pollution and number of matings in a black honey bee (Apis mellifera mellifera) population, Theor. Appl. Genet. 73, 223–227.

    Google Scholar 

  • Crewe R.M., Hepburn H.R., Moritz R.F.A. (1994) Morphometric analysis of 2 southern African races of honeybee, Apidologie 25, 61–70.

    Google Scholar 

  • Dall’Olio R., Marino A., Lodesani M., Moritz R.F.A. (2007) Genetic characterization of Italian honeybees, Apis mellifera ligustica, based on microsatellite DNA polymorphisms, Apidologie 38, 207–217.

    Google Scholar 

  • Daly H.V., Hoelmer K., Norman P., Allen T. (1982) Computer-assisted measurement and identification of honeybees (Hymenoptera: Apidae), Ann. Entomol. Soc. Am. 75, 591–594.

    Google Scholar 

  • Dedej S., Biasiolo A., Piva R. (1996) Morphometric and alloenzyme characterization in the Albanian honeybee population Apis mellifera L., Apidologie 27, 121–131.

    Google Scholar 

  • Dedej S., Nazzi F. (1994) Two distances of forewing venation as estimates of wing size, J. Apic. Res. 33, 59–61.

    Google Scholar 

  • De la Rúa P., Serrano J., Galián J. (1998) Mitochondrial DNA variability in the Canary Islands honeybees (Apis mellifera L.), Mol. Ecol. 7, 1543–1547.

    PubMed  Google Scholar 

  • De la Rúa P., Galián J., Serrano J., Moritz R.F.A. (2001a) Genetic structure and distinctness of Apis mellifera L. populations from the Canary Islands, Mol. Ecol. 10, 1733–1742.

    PubMed  Google Scholar 

  • De la Rúa P., Galián J., Serrano J., Moritz R.F.A. (2001b) Molecular characterization and population structure of the honeybees from the Balearic islands (Spain), Apidologie 32, 417–427.

    Google Scholar 

  • De la Rúa P., Galián J., Serrano J., Moritz R.F.A. (2002a) Microsatellite analysis of non-migratory colonies of Apis mellifera iberica from southeastern Spain, J. Zool. Evol. Res. 40, 164–168.

    Google Scholar 

  • De la Rúa P., Serrano J., Galián J. (2002b) Biodiversity of Apis mellifera populations from Tenerife (Canary Islands) and hybridisation with East European races, Biodivers. Conserv. 11, 59–67.

    Google Scholar 

  • De la Rúa P., Galián J., Serrano J., Moritz R.F.A. (2003) Genetic structure of Balearic honeybee populations based on microsatellite polymorphism, Genet. Sel. Evol. 35, 339–350.

    PubMed  Google Scholar 

  • De la Rúa P., Jimenez Y., Galián J., Serrano J. (2004) Evaluation of the biodiversity of honey bee (Apis mellifera) populations from eastern Spain, J. Apic. Res. 43, 162–166.

    Google Scholar 

  • De la Rúa P., Hernandez-Garcia R., Jimenez Y., Galián J., Serrano J. (2005) Biodiversity of Apis mellifera iberica (Hymenoptera: Apidae) from northeastern Spain assessed by mitochondrial analysis, Insect Syst. Evol. 36, 21–28.

    Google Scholar 

  • De la Rúa P., Galián J., Pedersen B.V., Serrano J. (2006) Molecular characterization and population structure of Apis mellifera from Madeira and the Azores, Apidologie 37, 699–708.

    Google Scholar 

  • Dick C.W. (2001) Genetic rescue of remnant tropical trees by an alien pollinator, Proc. R. Soc. Lond. B 268, 2391–2396.

    CAS  Google Scholar 

  • Dietemann V., Pirk C.W.W., Crewe R. (2009) Is there a need for conservation of Honeybees in Africa? Apidologie 40, 285–295.

    Google Scholar 

  • Duan J.J., Marvier M., Huesing J., Dively G., Huang Z.Y. (2008) A meta-analysis of effects of Bt crops on honey bees (Hymenoptera: Apidae), PLoS ONE 3, e1415.

    PubMed  Google Scholar 

  • EC (2004) http://ec.europa.eu/agriculture/publi/ achievements/text_en.pdf.

  • EFSA (2008) Bee Mortality and Bee Surveillance in Europe, The Efsa J. 154, 1–28.

    Google Scholar 

  • Estoup A., Solignac M., Harry M., Cornuet J.M. (1993) Characterization of (GT), and (CT) microsatellites in two insect species: Apis mellifera and Bombus terrestris, Nucleic Acids Res. 21, 1427–1431.

    PubMed  CAS  Google Scholar 

  • Estoup A., Garnery L., Solignac M., Cornuet J.M. (1995) Microsatellite variation in honey bee (Apis mellifera L.) populations: Hierarchical genetic structure and test of the infinite allele and stepwise mutation models, Genetics 140, 679–695.

    PubMed  CAS  Google Scholar 

  • EU (2004), Achievements in Agriculturall Policy under Commissioner Franz Fischler (Period 1995–2004). European Commission, Brussels, Belgium, pp. 1–31.

    Google Scholar 

  • Faucon J.P., Aurieres C., Drajnudel P., Mathieu L., Ribière M., Martel A.C., Zeggane S., Chauzat M.P., Aubert M.F.A. (2005) Experimental study on the toxicity of imidacloprid given in syrup to honey bee (Apis mellifera) colonies, Pest Manage. Sci. 61, 111–125.

    CAS  Google Scholar 

  • Federal Office for Consumer Protection and Food Safety of Germany (2008) Hintergrundinformation: Bienenverlust durch insektizide Saatgutbehandlungsmittel in Deutschland 2008, [online] http://www.bvl. bund.de/nn_491652/DE/08_PresseInfothek/01_ Presse_und_Hintergrundinformationen/01_PI_ und_HGI/PSM/2008/Hintergrundinformation_ BienensterbenII.html (accessed on 13 February 2009).

  • Floris I., Prota R. (1994) Variazione di alcune caratteristiche morfometriche nella popolazione di Apis mellifera L. della Sardegna nell’ultimo ventennio, Apicoltura 9, 163–175.

    Google Scholar 

  • Flynn D.F.B., Gogol-Prokurat M., Nogeire T., Molinari N., Trautman Richers B., Lin B.B., Simpson N., Mayfield M.M., DeClerck F. (2009) Loss of functional diversity under land use intensification across multiple taxa, Ecol. Lett. 1, 22–33.

    Google Scholar 

  • Franck P., Garnery L., Solignac M., Cornuet J.M. (1998) The origin of west European subspecies of honeybees (Apis mellifera): New insights from microsatellite and mitochondrial data, Evolution 52, 1119–1134.

    CAS  Google Scholar 

  • Franck P., Garnery L., Celebrano G., Solignac M., Cornuet J.M. (2000a) Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. m. sicula), Mol. Ecol. 9, 907–921.

    PubMed  CAS  Google Scholar 

  • Franck P., Garnery L., Solignac M., Cornuet J.M. (2000b) Molecular confirmation of a fourth lineage in honeybees from the Near East, Apidologie 31, 167–180.

    CAS  Google Scholar 

  • Franck P., Garnery L., Loiseau A. (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data, Heredity 86, 420–430.

    PubMed  CAS  Google Scholar 

  • Francoy T.M., Prado P.P.R., Gonçalves L.S., Costa L.D., De Jong D. (2006) Morphometric differences in a single wing cell can discriminate Apis mellifera racial types, Apidologie 37, 91–97.

    Google Scholar 

  • Francoy T.M., Wittmann D., Drauschke M., Muller S., Steinhage V., Bezerra-Laure M.A.F., De Jong D., Goncalves L.S. (2008) Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures, Apidologie 39, 1–7.

    Google Scholar 

  • Freitas B.M., Imperatriz-Fonseca V.L., Medina L.M., Kleinert A.M.P., Galetto L., Nates-Parra G., Quezada-Euán J.J.G. (2009) Diversity, threats and conservation of bees in the Neotropics, Apidologie 40, 332–346.

    Google Scholar 

  • Fries I., Feng F., da Silva A., Slemenda S.B., Pieniazek N.J. (1996) Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae), Eur. J. Protistol. 32, 356–365.

    Google Scholar 

  • Ftayeh A., Meixner M., Fuchs S. (1994) Morphometrical investigation in Syrian honeybees, Apidologie 25, 396–401.

    Google Scholar 

  • Gallai N., Salles J.M., Settele J., Vaissière B.E. (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline, Ecol. Econ. 68, 810–821.

    Google Scholar 

  • Garnery L., Cornuet J.-M., Solignac M. (1992). Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis, Mol. Ecol. 1 145–154.

    PubMed  CAS  Google Scholar 

  • Garnery L., Solignac M., Celebrano G., Cornuet J.M. (1993) A simple test using restricted PCR-amplified mitochondrial-DNA to study the genetic-structure of Apis mellifera L., Experientia 49, 1016–1021.

    CAS  Google Scholar 

  • Garnery L., Mosshine E.H., Oldroyd B.P., Cornuet J.M. (1995) Mitochondrial-DNA variation in Moroccan and Spanish honey-bee populations, Mol. Ecol. 4, 465–471.

    CAS  Google Scholar 

  • Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998a) Genetic diversity of the west European honey bee (Apis mellifera and A. m. iberica). I. Mitochondrial DNA, Genet. Sel. Evol. 30, 49–74.

    Google Scholar 

  • Garnery L., Franck P., Baudry E., Vautrin D., Cornuet J.M., Solignac M. (1998b) Genetic biodiversity of the West European honeybee (Apis mellifera mellifera and Apis mellifera iberica). II. Microsatellite loci, Genet. Sel. Evol. 30, 49–74.

    Google Scholar 

  • Goetze G. (1940) Die beste Biene, Liedlof Loth Michaelis, Leipzig.

    Google Scholar 

  • Greatti M., Barbattini R., Stravisi A., Sabatini A.G., Rossi S. (2006) Presence of the a.i. imidacloprid on vegetation near corn fields sown with Gaucho® dressed seeds, Bull. Insectology 59, 99–103.

    Google Scholar 

  • Hall H.G., Smith D.R. (1991) Distinguishing African and European honey bee matrilines using amplified mitochondrial DNA, Proc. Natl Acad. Sci. USA 88, 4548–4552.

    PubMed  CAS  Google Scholar 

  • Hepburn H.R., Radloff S.E. (1996) Morphometric and pheromonal analyses of Apis mellifera L. along a transect from the Sahara to the Pyrenees, Apidologie 27, 35–45.

    CAS  Google Scholar 

  • Higes M., Martín-Hernández R., Botías C., Garrido Bailón E., González-Porto A.V., Barrios L., del Nozal M.J., Bernal J.L., Jiménez J.J., García Palencia P., Meana A., (2008) How natural infection by Nosema ceranae causes honeybee collapse, Environ. Microbiol. 10, 2659–2669.

    PubMed  Google Scholar 

  • Hood W.M. (2004) The Small Hive Beetle, Aethina tumida: A Review, Bee World 85, 51–59.

    Google Scholar 

  • Huryn V.M.B. (1997) Ecological impacts of introduced honey bees, Q. Rev. Biol. 72, 275–297.

    Google Scholar 

  • Ivanova E.N., Staykova T.A., Bouga M. (2007) Allozyme variability in honey bee populations from some mountainous regions in the southwest of Bulgaria, J. Apic. Res. 46, 3–7.

    Google Scholar 

  • Jaffè R., Dietemann V., Crewe R.M., Moritz R.F.A. (2009) Temporal variation in the genetic structure of a drone congregation area: An insight into the population dynamics of wild African honeybees (Apis mellifera scutellata), Mol. Ecol. 18, 1511–1522.

    PubMed  Google Scholar 

  • Jensen A.B., Pedersen B.V. (2005) Honeybee Conservation: a case story from Læsø island, Denmark, in: Lodesani M., Costa C. (Eds.), Beekeeping and conserving biodiversity of honeybee. Sustainable bee breeding. Theoretial and practical guide. Northern Bee Books, Hebden Bridge, pp. 142–164.

    Google Scholar 

  • Jensen A.B., Palmer K.A., Boomsma J.J., Pedersen B.V. (2005) Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in northwest Europe, Mol. Ecol. 14, 93–106.

    PubMed  Google Scholar 

  • Kandemir I., Kence A. (1995) Allozyme variability in a central Anatolian honeybee (Apis mellifera L.) population, Apidologie 26, 503–510.

    Google Scholar 

  • Kandemir I., Kence M., Kence A. (2000) Genetic and morphometric variation in honeybee (Apis mellifera L.) populations of Turkey, Apidologie 31, 343–356.

    CAS  Google Scholar 

  • Kandemir I., Kence M., Kence A. (2005) Morphometric and electrophoretic variation in different honeybee (Apis mellifera L.) populations, Turk. J. Vet. Anim. Sci. 29, 885–890.

    Google Scholar 

  • Kandemir I., Meixner M.D., Ozkan A., Sheppard W.S. (2006) Genetic characterization of honey bee (Apis mellifera cypria) populations in northern Cyprus, Apidologie 37, 547–555.

    CAS  Google Scholar 

  • Kauhausen-Keller D., Ruttner F., Keller R. (1997) Morphometric studies on the microtaxonomy of the species Apis mellifera L., Apidologie 28, 295–307.

    Google Scholar 

  • Kevan P.G., Phillips T.P. (2001) The economic impacts of pollinator declines: an approach to assessing the consequences, Conserv. Ecol. 5, 8.

    Google Scholar 

  • Koeniger N., Koeniger G. (2000) Reproductive isolation among species of the genus Apis, Apidologie 31, 313–339.

    Google Scholar 

  • Kozmus P., Jevrosima S., Stanimirovic Z., Stojic V., Kulisic Z., Meglic V. (2007) Analysis of mitochondrial DNA in honey bees (Apis mellifera) from Serbia, Acta Vet. Beograd 57, 465–476.

    Google Scholar 

  • Kraus B., Page R.E. (1995) Effect of Varroa jacobsoni (Mesostigmata Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California, Environ. Entomol. 24, 1473–1480.

    Google Scholar 

  • Kremen C., Williams N.M., Thorp R.W. (2002) Crop pollination from native bees at risk from agricultural intensification, Proc. Natl Acad. Sci. USA 99, 16812–16816.

    PubMed  CAS  Google Scholar 

  • Lattorff H.M.G., Moritz R.F.A., Crewe R.M., Solignac M. (2007) Control of reproductive dominance by the thelytoky locus in honeybees, Biol. Lett. 3, 292–295.

    PubMed  CAS  Google Scholar 

  • Li J.K., Wang T., Zhang Z.H., Pan Y. (2007) Proteomic analysis of royal jelly from three strains of western honeybees (Apis mellifera), J. Agric. Food Chem. 55, 8411–8422.

    PubMed  CAS  Google Scholar 

  • Lodesani M., Costa C. (2003) Bee breeding and genetics in Europe, Bee World 84, 69–85.

    Google Scholar 

  • Louveaux J., Albisetti M., Delangue M., Theurkauff M. (1966) Les modalités de l’adaptation des abeilles (Apis mellifica L.) au milieu naturel, Ann. Abeille 9, 323–350.

    Google Scholar 

  • Malone L., Pham-Delègue M. (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.), Apidologie 32, 287–304.

    CAS  Google Scholar 

  • Marletta F., Manino A., Pedrini P. (1984a) Intergradazione fra sottospecie di Apis mellifera L. in Liguria, Apic. Mod. 75, 159–163.

    Google Scholar 

  • Marietta E., Manino A., Balboni G. (1984b) Indagini biometriche su popolazioni di Apis mellifera L. delle Alpi occidentali, Apic. Mod. 75, 213–223.

    Google Scholar 

  • Matheson A., Buchmann S.L., O’Toole C., Westrich P., Williams I.H. (1996) The conservation of bees, Academic Press, Harcourt Brace, London.

    Google Scholar 

  • Meixner M.D., Sheppard W.S., Poklukar J. (1993) Asymmetrical distribution of a mitochondrial-DNA polymorphism between two introgressing honey-bee subspecies, Apidologie 24, 147–153.

    Google Scholar 

  • Meixner M.D., Worobik M., Wilde J., Fuchs S., Koeniger N. (2007) Apis mellifera mellifera in eastern Europe-morphometric variation and determination of its range limits, Apidologie 38, 191–197.

    Google Scholar 

  • Miguel I., Iriondo M., Garnery L., Sheppard W.S., Estonba A. (2007) Gene flow within the M evolutionary lineage of Apis mellifera: role of the Pyrenees, isolation by distance and post-glacial re-colonization routes in the western Europe, Apidologie 38, 141–155.

    CAS  Google Scholar 

  • Ministry of Food and Agriculture of Baden-Württemberg (2008) Abschlussbericht Beizung and Bienenschäde, [online] http://www. mlr.baden-wuerttemberg.de/mlr/allgemein/ Abschlussbericht_Bienenschaeden.pdf (accessed on 13 February 2009).

  • Moritz R.F.A., Hawkins C.F., Crozier R.H., Mackinley A.G. (1986) A mitochondrial DNA polymorphism in honeybees (Apis mellifera), Experientia 42, 322–324.

    CAS  Google Scholar 

  • Moritz R.F.A., Härtel S., Neumann P. (2005) Global invasions of the western honey bee (Apis mellifera) and the consequences for biodiversity, Ecoscience 12, 289–301.

    Google Scholar 

  • Moritz R.F.A., Kraus F.B., Kryger P., Crewe R.M. (2007a) The size of wild honeybee populations (Apis mellifera) and its implications for the conservation of honeybees, J. Insect Conserv. 11, 391–397.

    Google Scholar 

  • Moritz R.F.A., Dietemann V., Crewe R.M. (2007b) Determining colony densities in wild honeybee populations (Apis mellifera) with linked microsatellite DNA markers, J. Insect Conserv. 12, 455–459.

    Google Scholar 

  • Murray T.E., Kuhlmann M., Potts S.G. (2009). Conservation ecology of bees: populations, species and communities, Apidologie 40, 211–236.

    Google Scholar 

  • Nazzi F. (1992a) Morphometric analysis of honey bees from an area of racial hybridization in northeastern Italy, Apidologie 23, 89–96.

    Google Scholar 

  • Nazzi F. (1992b) Fluctuating forewing characters in hybrid honey bees from north-eastern Italy, J. Apic. Res. 31, 27–31.

    Google Scholar 

  • Neumann P., Moritz R.F.A., Van Praagh J.P. (1999a) Queen mating frequency in different types of honey bee mating apiaries, J. Apic. Res. 38, 11–18.

    Google Scholar 

  • Neumann P., Van Praagh J.P., Moritz R.F.A., Dustmann J.H. (1999b) Testing reliability of a potential island mating apiary using DNA microsatellites, Apidologie 30, 257–276.

    CAS  Google Scholar 

  • Oldroyd B.P., Nanork P. (2009) Conservation of Asian honey bees, Apidologie 40, 296–312.

    Google Scholar 

  • Orantes-Bermejo F.J., García-Fernández P. (1995) Morphological variability of Apis mellifera iberica in different apiaries of southern Spain, J. Apic. Res. 34, 23–30.

    Google Scholar 

  • Paini D.R. (2004) Impact of the introduced honey bee (Apis mellifera) (Hymenoptera: Apidae) on native bees: A review, Austral. Ecol. 29, 399–407.

    Google Scholar 

  • Palmer K.A., Oldroyd B.P. (2000) Evolution of multiple mating in the genus Apis, Apidologie 31, 235–248.

    Google Scholar 

  • Paxton R.J., Klee J., Korpela S., Fries I. (2007) Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis, Apidologie 38, 558–565.

    Google Scholar 

  • Peiren N., Vanrobaeys F., de Graaf D.C., Devreese B., Beeumen J.V., Jacobs F.J. (2005) The protein composition of honeybee venom reconsidered by a proteomic approach, Biochim. Biophys. Acta-Prot. Prot. 1752, 1–5.

    CAS  Google Scholar 

  • Radloff S.E., Hepburn H.R., Hepburn C., De la Rúa P. (2001) Morphometric affinities and population structure of honeybees of the Balearic Islands in the Mediterranean Sea, J. Apic. Res. 40, 97–103.

    Google Scholar 

  • Randi E. (2008) Detecting hybridization between wild species and their domesticated relatives, Mol. Ecol. 17, 285–293.

    PubMed  Google Scholar 

  • Reusch H.B.H., Wood T.E. (2007) Molecular ecology of global change, Mol. Ecol. 16, 3973–3992.

    PubMed  CAS  Google Scholar 

  • Rinderer T.E., Oldroyd B.P., Sheppard, W.S. (1993) Africanized bees in the U.S., Sci. Am. 269, 52–58.

    Google Scholar 

  • Robinson G.E., Evans J.D., Maleszka R., Robertson H.M., Weaver D.B., Worley K., Gibbs R.A., Weinstock G.M. (2006) Sweetness and light: illuminating the honey bee genome, Insect Mol. Biol. 15, 535–539.

    PubMed  CAS  Google Scholar 

  • Rortais A., Arnold G., Halm M.-P., Touffet-Briens F. (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees, Apidologie 36, 71–83.

    CAS  Google Scholar 

  • Rüppell O., Pankiw T., Page R.E. (2004) Pleiotropy, Epistasis and New QTL: The Genetic Architecture of Honey Bee Foraging Behavior, J. Hered. 95, 481–491.

    PubMed  Google Scholar 

  • Ruttner F. (1988) Biogeography and Taxonomy of Honeybees, Springer Verlag, Berlin.

    Google Scholar 

  • Ruttner F. (1992) Naturgeschichte der Honigbienen, Ehrenwirth, Munich.

    Google Scholar 

  • Ruttner F., Tassencourt L., Louveaux J. (1978) Biometrical statistical analysis of the geographic variability of Apis mellifera L. I: Materials and methods, Apidologie 9, 363–382.

    Google Scholar 

  • Schmuck R., Schoning R., Stork A., Schramel O. (2001) Risk posed to honeybees (Apis mellifera L. Hymenoptera) by an imidacloprid seed dressing of sunflowers, Pest Manage. Sci. 57, 225–238.

    CAS  Google Scholar 

  • Schonleben S., Sickmann A., Mueller M.J., Reinders J. (2007) Proteome analysis of Apis mellifera royal jelly, Anal. Bioanal. Chem. 389, 1087–1093.

    PubMed  Google Scholar 

  • Schroder S., Wittmann D., Drescher W., Roth V., Steinhage V., Cremers A.B. (2002) The new key to bee: Automated identification by image analysis of wings, in: Kevan P., Imperatriz Fonseca V.L. (Eds.), Pollinating bees — the Conservation Link Between Agriculture and Nature, Ministry of Environment, Brasilia.

    Google Scholar 

  • Schneider S.S., DeGrandi-Hoffman G., Smith D.R. (2004) The African honey bee: factors contributing to a successful biological invasion, Annu. Rev. Entomol. 49, 351–376.

    CAS  Google Scholar 

  • Shaibi T., Lattorff H.M.G., Moritz, R.F.A. (2008) A microsatellite DNA toolkit for studying population structure in Apis mellifera, Mol. Ecol. Resources 8, 1034–1036.

    CAS  Google Scholar 

  • Sheppard W.S. (1997) Subspecies of Apis mellifera, in: Morse R.A., Flottum K. (Eds.), Honey Bee Pests, Predators and Diseases, A.I. Root Co., Medina, OH, USA, pp. 519–533.

    Google Scholar 

  • Sheppard W.S., Berlocher S.H. (1984) Enzyme polymorphisms in Apis mellifera mellifera from Norway, J. Apic. Res. 23, 64–69.

    CAS  Google Scholar 

  • Sheppard W.S., Berlocher S.H. (1985) New allozyme variability in Italian honey bees, J. Hered. 76, 45–48.

    PubMed  CAS  Google Scholar 

  • Sheppard W.S., Meixner M. (2003) Apis mellifera pomonella, a new honey bee subspecies from Central Asia, Apidologie 34, 367–375.

    Google Scholar 

  • Sheppard W.S., Smith D.R. (2000) Identification of African-Derived Bees in the Americas: A Survey of Methods, Ann. Entomol. Soc. Am. 93, 159–176.

    CAS  Google Scholar 

  • Sheppard W.S., Rinderer T.E., Meixner M.D., Yoo H.R., Stelzer J.A., Schiff N.M., Kamel S.M., Krell R. (1996) Hinfl variation in mitochondrial DNA of old world honey bee subspecies, J. Hered. 87, 35–40.

    CAS  Google Scholar 

  • Sheppard W.S., Arias M.C., Grech A., Meixner M.D. (1997) Apis mellifera ruttneri, a new honey bee subspecies from Malta, Apidologie 28, 287–293.

    Google Scholar 

  • Sheppard W.S., Rinderer T.E., Garnery L., Shimanuki H. (1999) Analysis of Africanized honey bee mitochondrial DNA reveals further diversity of origin, Genet. Mol. Biol. 22, 73–75.

    Google Scholar 

  • Sinacori A., Rinderer T.E., Lancaster V., Sheppard W.S. (1998) A morphological and mitochondrial assessment of Apis mellifera from Palermo, Italy, Apidologie 29, 481–490.

    Google Scholar 

  • Smith D.R., Glenn T.C. (1995) Allozyme polymorphisms in Spanish honeybees (Apis mellifera iberica), J. Hered. 86, 12–16.

    PubMed  CAS  Google Scholar 

  • Smith D.R., Crespi B.J., Bookstein F.L. (1997) Fluctuating asymmetry in the honey bee, Apis mellifera: effects of ploidy and hybridization, J. Evol. Biol. 10, 551–574.

    Google Scholar 

  • Soland-Reckeweg G., Heckel G., Neumann P., Fluri P., Excoffier L. (2008) Gene flow in admixed populations and implications for the conservation of the Western honeybee, Apis mellifera, J. Insect Conserv., in press, DOI:10.1007/s10841-008-9175-0.

  • Solignac M., Vautrin D., Loiseau A., Mougel F., Baudry E. (2003) Five hundred and fifty microsatellite markers for the study of the honeybee (Apis mellifera L.) genome, Mol. Ecol. Notes 3, 307–311.

    CAS  Google Scholar 

  • Solignac M., Mougel F., Vautrin D., Monnerot M., Cornuet J.M. (2007) A third-generation microsatellite-based linkage map of the honey bee, Apis mellifera, and its comparison with the sequence-based physical map, Genome Biol. 8, R66, DOI:10.1186/gb-2007-8-4-r66.

    PubMed  Google Scholar 

  • Southwick E.E., Southwick L. (1992) Estimating the economic value of honey bees (Hymenoptera: Apidae) as agricultural pollinators in the United States, J. Econ. Entomol. 85, 621–633.

    Google Scholar 

  • Steinhage V., Arbuckle T., Schröder S., Cremers A.B., Wittmann D. (2001) ABIS: Automated Identification of Bee Species, BIOLOG. Workshop, German Programme on Biodiversity and Global Change, Status Report, pp. 194–195.

  • Steinhage V., Schröder S., Lampe K.H., Cremers A.B. (2007) Automated extraction and analysis of morphological features for species identification, in: MacLeod N. (Ed.), Automated Object Identification in Systematics: Theory, Approaches, and Applications, pp. 115–129.

  • Strange J.P., Garnery L., Sheppard W.S. (2007) Persistence of the Landes ecotype of Apis mellifera mellifera in southwest France: confirmation of a locally adaptive annual brood cycle trait, Apidologie 38, 259–267.

    Google Scholar 

  • Strange J.P., Garnery L., Sheppard W.S. (2008) Morphological and molecular characterization of the Landes honey bee (Apis mellifera L.) ecotype for genetic conservation, J. Insect Conserv. 12, 527–537.

    Google Scholar 

  • Sušnik S., Kozmus P., Poklukar J., Megli V. (2004) Molecular characterisation of indigenous Apis mellifera carnica in Slovenia, Apidologie 35, 623–636.

    Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera, Nature 443, 931–949.

    Google Scholar 

  • Thompson H.M. (2003) Behavioural effects of pesticides in bees — Their potential for use in risk assessment, Ecotoxicology 12, 317–330.

    PubMed  CAS  Google Scholar 

  • Tofilski A. (2004) Draw Wing, a program for numerical description of insect wings, J. Insect Sci. 4, 17–21.

    PubMed  Google Scholar 

  • van Engelsdorp D., Underwood R., Caron D., Hayes J. (2007) An estimate of managed colony losses in the winter of 2006–2007: a report commissioned by the apiary inspectors of America, Am. Bee J. 147, 599–603.

    Google Scholar 

  • Whitfield C.W., Behura S.K., Berlocher S.H., Clark A.G., Johnston J.S., Sheppard W.S., Smith D.R., Suarez A.V., Weaver D., Tsutsui N.D. (2006) Thrice out of Africa: Ancient and recent expansions of the honey bee, Apis mellifera, Science 314, 642–645.

    PubMed  CAS  Google Scholar 

  • Zander E. (1909) Tierische Parasiten als Krankenheitserreger bei der Biene, Münch. Bienenztg. 31, 196–204.

    Google Scholar 

  • Zayed A. (2009) Bee genetics and conservation, Apidologie 40, 237–262.

    Google Scholar 

  • Zayed A., Whitfield W.C. (2008) A genome-wide signature of positive selection in ancient and recent invasive expansions of the honey bee Apis mellifera, Proc. Natl Acad. Sci. USA 105, 3421–3426.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilar De la Rúa.

Additional information

Manuscript editor: Robert Paxton

These authors have contributed equally to this review.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De la Rúa, P., Jaffé, R., Dall’Olio, R. et al. Biodiversity, conservation and current threats to European honeybees. Apidologie 40, 263–284 (2009). https://doi.org/10.1051/apido/2009027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2009027

Navigation