Skip to main content
Log in

Sequence Spaces l p,q in Probabilistic Characterizations of Weak Type Operators

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

We study operators \(T:X \mapsto L_ \circ ([0,1],{\mathcal{M}},m)\) (not necessarily linear) defined on a quasi-Bahach space X and taking values in the space of real-valued Lebesgue-measurable functions. Factorization theorems for linear and superlinear operators with values in the space \(L_ \circ \) are proved with the help of the Lorentz sequence spaces \(l_{p,q} \). Sequences of functions belonging to fixed bounded sets in the spaces \(L_{p,\infty } \) are characterized for \(0 < p < \infty \) and \(0 < q \leqslant p\). The possibility of distinguishing weak type operators (bounded in the space \(L_{p,\infty } \)) from operators factorizable through \(L_{p,\infty } \) is obtained in terms of sequences of independent random variables. A criterion under which an operator is symmetrically bounded in order in \(L_{p,r} ,{\text{ }}0 < r \leqslant \infty \), is established. Some refinements of the above-mentioned results are obtained for translation shift-invariant sets and operators. Bibliography: 30 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. M. Nikishin, “Resonance theorems and superlinear operators,” Usp. Mat. Nauk, 25, 129–191 (1970).

    Google Scholar 

  2. E. M. Nikishin, “Resonance theorems and eigenfunction series of the Laplace operator,” Izv. Akad. Nauk SSSR, Ser. Mat., 36, 795–813 (1972).

    Google Scholar 

  3. B. Maurey, “Théorèmes de factorisation pour les opérateurs linéares a valeurs dans les espaces L p ,” Astérisque, 11, 163 (1974).

    Google Scholar 

  4. J.-L. Rubio de Francia and I. Garcia-Cuerva, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam (1985).

    Google Scholar 

  5. G. Pisier, “Factorisation of operators through L p,∞ and L p ,1,” Math. Annalen, 276, 105–136 (1986).

    Google Scholar 

  6. P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math., 25, Cambridge Univ. Press (1991).

  7. B. S. Kashin and A. A. Saakyan, Orthogonal Series [in Russian], Moscow (1999).

  8. K. Parthasarathy, Introduction to Probability and Measure [Russian translation], Moscow (1983).

  9. J. Bergh and J. Löfström, Interpolation Spaces [Russian translation], Moscow (1980).

  10. S. Rolewich, Metric Linear Spaces, Warsaw (1972).

  11. A. Pietsch, Operator Ideals [Russian translation], Moscow (1982).

  12. N. N. Vakhania, B. I. Tarieladze, and S. A. Chobanyan, Probability Distributions in Banach Spaces [in Russian], Moscow (1985).

  13. N. Bourbaki, Integration. Measures, Measure Integration [Russian translation], Moscow (1967).

  14. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Springer, Berlin (1979).

    Google Scholar 

  15. N. J. Kalton, “Linear operators on L p for 0 < p < 1,” Trans. Amer. Math. Soc., 259, 319–355 (1980).

    Google Scholar 

  16. W. Rudin, Functional Analysis [Russian translation], Moscow (1975).

  17. S. G. Krein, Yu. I. Petunin, and E. M. Semenov, Interpolation of Linear Operators [in Russian], Moscow (1978).

  18. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin (1977).

    Google Scholar 

  19. E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces [Russian translation], Moscow (1974).

  20. R. A. Hunt, “On L(p, q) spaces,” L'Enseignement Math., 12, 249–276 (1966).

    Google Scholar 

  21. M. A. Krasnosel'sky and Ya. B. Rutitsky, Convex Functions and Orlicz Spaces [in Russian], Moscow (1958).

  22. S. Ya. Novikov and A. M. Shteinberg, “Lorentz spaces and almost-sure boundedness of sequences of independent random values,” Sib. Mat. Zh., 30, 138–144 (1989).

    Google Scholar 

  23. S. Ya. Novikov, “A-systems, independent functions, and sets bounded in spaces of measurable functions” (to appear).

  24. B. M. Makarov, “p-absolutely summing operators and some of their applications,” Algebra Analiz, 3, 1–76 (1991).

    Google Scholar 

  25. S. V. Kislyakov, “Absolutely summing operators on the disk algebra,” Algebra Analiz, 3, 1–77 (1991).

    Google Scholar 

  26. W. B. Johnson and G. Schechtman, “Sums of independent random variables in rearrangement-invariant function spaces,” Ann. Prob., 17, 789–808 (1989).

    Google Scholar 

  27. N. L. Carothers and S. J. Dilworth, “Inequalities for sums of independent random variables,” Proc. Amer. Math. Soc., 104, 221–226 (1988).

    Google Scholar 

  28. P. L. Ul'yanov, “Representation of functions by series and the classes ϕ(L),” Usp. Mat. Nauk, 27, 3–52 (1972).

    Google Scholar 

  29. A. M. Shteinberg, “Translation-invariant operators in Lorentz spaces,” Funkts. Anal. Prilozh., 20, 92–93 (1986).

    Google Scholar 

  30. S. Ya. Novikov, “Cotype and type of Lorentz function spaces,” Mat. Zametki, 32, 213–221 (1982).

    Google Scholar 

  31. J. Creekmore, “Type and cotype in Lorentz L p,q spaces,” Proc. Kon. Ned. Akad. Wetensch, A84, 145–152 (1981).

    Google Scholar 

  32. V. L. Levin, Convex Analysis in Spaces of Measurable Functions [in Russian], Moscow (1985).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novikov, S.Y. Sequence Spaces l p,q in Probabilistic Characterizations of Weak Type Operators. Journal of Mathematical Sciences 120, 1733–1751 (2004). https://doi.org/10.1023/B:JOTH.0000018872.60131.b4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTH.0000018872.60131.b4

Keywords

Navigation