Skip to main content
Log in

Cadmium toxicity is reduced by nitric oxide in rice leaves

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

We evaluate the protective effect of nitric oxide (NO) against Cadmium (Cd) toxicity in rice leaves. Cd toxicity of rice leaves was determined by the decrease of chlorophyll and protein contents. CdCl2 treatment resulted in (1) increase in Cd content, (2) induction of Cd toxicity, (3) increase in H2O2 and malondialdehyde (MDA) contents, (4) decrease in reduced form glutathione (GSH) and ascorbic acid (ASC) contents, and (5) increase in the specific activities of antioxidant enzymes (superoxide dismutase, glutathione reductase, ascorbate peroxidase, catalase, and peroxidase). NO donors [N-tert-butyl-α-phenylnitrone, 3-morpholinosydonimine, sodium nitroprusside (SNP), and ASC + NaNO2] were effective in reducing CdCl2-induced toxicity and CdCl2-increased MDA content. SNP prevented CdCl2-induced increase in the contents of H2O2 and MDA, decrease in the contents of GSH and ASC, and increase in the specific activities of antioxidant enzymes. SNP also prevented CdCl2-induced accumulation of NH4 +, decrease in the activity of glutamine synthetase (GS), and increase in the specific activity of phenylalanine ammonia-lyase (PAL). The protective effect of SNP on CdCl2-induced toxicity, CdCl2-increased H2O2, NH4 +, and MDA contents, CdCl2-decreased GSH and ASC, CdCl2-increased specific activities of antioxidant enzymes and PAL, and CdCl2-decreased activity of GS were reversed by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide, a NO scavenger, suggesting that protective effect by SNP is attributable to NO released. Reduction of CdCl2-induced toxicity by NO in rice leaves is most likely mediated through its ability to scavenge active oxygen species including H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anbar M. 1995. Nitric oxide: a synchronizing chemical messenger. Experientia 51: 545–550.

    Article  CAS  PubMed  Google Scholar 

  • Beligni M.V. and Lamattina L. 1999. Nitric oxide protects against cellular damage produced by methyl viologen herbicides in potato plants. Nitric Oxide Biol. Chem. 3: 199–208.

    Article  CAS  Google Scholar 

  • Beligni M.V., Fath A., Bethake P.C., Lamattina L. and Jones R.L. 2002. Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol. 129: 1642–1650.

    Article  CAS  PubMed  Google Scholar 

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chaoui A., Mazhouri S., Ghorbal M.H. and Ferjani E.E. 1997. Cadmium and Zinc induction of lipid peroxidation and effects of antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci. 127: 139–147.

    Article  CAS  Google Scholar 

  • Cheng F.-Y., Hsu S.-Y. and Kao C.H. 2002.. Nitric oxide counteracts the senescence of detached rice leaves induced by dehydration and polyethylene glycol but not by sorbitol. Plant Growth Regul. 38: 265–272.

    Article  CAS  Google Scholar 

  • Chien H.-F. and Kao C.H. 2000. Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Sci. 156: 111–115.

    Article  CAS  PubMed  Google Scholar 

  • Chien H.-F., Lin C.C., Wang J.W., Chen C.T. and Kao C.H. 2002. Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regul. 36: 41–47.

    Article  CAS  Google Scholar 

  • Chu C. and Lee T.M. 1989. The relationship between ethylene biosynthesis and chilling tolerance in seedlings of rice (Oryza sativa). Bot. Bull. Acad. Sin. 30: 263–273.

    CAS  Google Scholar 

  • Clark D., Dunar J., Navarre D.A. and Klessig D.F. 2000. Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol. Plant-Microbe Interact 14: 1380–1384.

    Google Scholar 

  • d'Ischia M., Palumbo A. and Buzzo F. 2000. Interactions of nitric oxide with lipid peroxidation products under aerobic conditions: inhibitory effects on the formation of malondialdehyde and related thiobarbituric acid-reactive substances. Nitric Oxide Biol. Chem. 4: 4–14.

    Google Scholar 

  • Foster J.G. and Hess J.L. 1980. Responses of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66: 482–487.

    CAS  Google Scholar 

  • Foyer C.H., Lopez-Delgado H., Dat J.F. and Scott I.M. 1997. Hydrogen peroxide and glutathione-associated mechanism of acclamatory stress tolerance and signaling. Physiol. Plant. 100: 241–254.

    Article  CAS  Google Scholar 

  • Gallego S.M., Benavides M.P. and Tomaro M.L. 1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Sci. 121: 151–159.

    Article  CAS  Google Scholar 

  • Hahlbrock R. and Grisebach H. 1979. Enzymic controls in the biosynthesis of lignin and flavonoids. Annu. Rev. Plant Physiol. 30: 105–130.

    Article  CAS  Google Scholar 

  • Heath R.L. and Packer L. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189–198.

    CAS  PubMed  Google Scholar 

  • Hung K.T. and Kao C.H. 2003. Nitric oxide counteracts the senescence of rice leaves induced by abscisic acid. J. Plant Physiol. 160: 871–879.

    Article  CAS  PubMed  Google Scholar 

  • Hung K.T., Chang C.J. and Kao C.H. 2002. Paraquat toxicity is reduced by nitric oxide in rice leaves. J. Plant Physiol. 159: 159–166.

    Article  CAS  Google Scholar 

  • Hyodo H. and Fujinami H. 1989. The effect of 2,5-norbornadiene on the induction of the activity of 1-aminocyclopropane-1-carboxylate synthase and of phenylalanine ammonialyase in wounded mesocarp tissue of Cucurbita maxima. Plant Cell Physiol. 30: 857–860.

    CAS  Google Scholar 

  • Jana S. and Choudhuri M.A. 1981. Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquat. Bot. 12: 345–354.

    Google Scholar 

  • Kato M. and Shimizu S. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: phenolic-dependent peroxidative degradation. Can. J. Bot. 65: 729–735.

    CAS  Google Scholar 

  • Kim Y.S. and Han S. 2000. Nitric oxide protects Cu, Zn-superoxide dismutase from hydrogen peroxide-induced inactivation. FEBS Lett. 479: 25–28. ¦¦Author, please check reference not cited in text¦¦

    Article  CAS  PubMed  Google Scholar 

  • Kumar G.N.M. and Knowles N.R. 2003. Wound-induced superoxide production and PAL activity decline with potato tuber age and wound healing ability. Physiol. Plant. 117: 108–117.

    Article  CAS  Google Scholar 

  • Lamattina L., Garcia-Mata C., Graziano M. and Pagnussat G. 2003. NITRIC OXIDE: the versatility of an extensive signal molecule. Annu. Rev. Plant Biol. 54: 109–136.

    Article  CAS  PubMed  Google Scholar 

  • Laws M.Y., Charles S.A. and Halliwell B. 1983. Glutathione and ascorbic acid in spinach chloroplasts: the effect of hydrogen peroxide and of paraquat. Biochemical J. 210: 899–903.

    Google Scholar 

  • Lozano-Rodriguez E., Hernandez L., Bonay P. and Charpena-Ruiz R. 1997. Distribution of cadmium in shoot and root tissue of maize and pea plants: physiological disturbances. J. Exp. Bot. 48: 123–128.

    CAS  Google Scholar 

  • MacAdam J.W., Nelson C.J. and Sharp R.E. 1992. Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol. 99: 872–878.

    CAS  Google Scholar 

  • Martinez G.R., DiMascio P., Bonini M.G., Augusto O., Briviba K., Sies H., Mauer P., Röthlisberger U., Herold S. and Koppenol W.H. 2000. Peroxynitrite does not decompose to singlet oxygen ('ΔgO2) and nitroxyl (NO-). Proc. Natl Acad. Sci. USA 97: 10307–10312.

    Article  CAS  PubMed  Google Scholar 

  • Miflin B.J. and Lea P.J. 1976. The pathway of nitrogen assimilation in plants. Phytochemistry 15: 873–885.

    Article  CAS  Google Scholar 

  • Nakano Y. and Asada K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867–880.

    CAS  Google Scholar 

  • Neill S.J., Desikan R., and Hancock J.T. 2003. Nitric oxide signaling in plants. New Phytol. 159: 11–35.

    Article  CAS  Google Scholar 

  • Noctor G. and Foyer C.H. 1998. Ascorbate and glutathione: keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 249–279.

    Article  CAS  PubMed  Google Scholar 

  • Oaks A., Stulen J., Jones K., Winspear M.J. and Booesel I.L. 1980. Enzymes of nitrogen assimilation in maize roots. Planta 148: 477–484.

    Article  CAS  Google Scholar 

  • Olmos E., Martinez-Solano J.R., Piqueras A. and Hellin E. 2003. Early steps in the oxidastive burst induced by cadmium in cultured tobacco cells (BY-2 line). J. Exp. Bot. 54: 291–301.

    Article  CAS  PubMed  Google Scholar 

  • Orozco-Cárdenas M. and Ryan C.A. 2002. Nitric oxide negatively modulate wound signaling in tomato plants. Plant Physiol. 130: 487–493.

    PubMed  Google Scholar 

  • Paoletti F., Aldinucci D., Mocali A. and Capparini A. 1986. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154: 536–541.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai N., Katayama Y. and Yamaya T. 2001. Overlapping expression of cytosolic glutamine syntethase and phenylalanine ammonia-lyase in immature leaf blades of rice. Physiol. Plant. 113: 400–408.

    Article  CAS  PubMed  Google Scholar 

  • Sandalio L.M., Dalurzo H.C., Gmez M., Romero-Puertas M.C. and del Río L.A. 2001. Cdamium-induced changes in the growth and oxidative metabolism of pea plants. J. Exp. Bot. 52: 2115–2126.

    CAS  PubMed  Google Scholar 

  • Sanitá di Toppi L. and Gabbrielli R. 1999. Response to cadmium in higher plants. Environ. Exp. Bot. 41: 105–130.

    Google Scholar 

  • Schützendübel A. and Polle A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351–1365.

    PubMed  Google Scholar 

  • Schützendübel A., Schwanz P., Teichmann T., Gross K., Langenfed-Heyser R., Godbold D.L. and Polle A. 2001. Cadmium-induced changes in antioxidantive system, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol. 127: 887–898.

    PubMed  Google Scholar 

  • Smith I.K. 1985. Stimulation of glutathione synthesis in photo-respiring plants by catalase inhibitors. Plant Physiol. 79: 1044–1047.

    CAS  Google Scholar 

  • Thompson J.E., Legge R.L. and Barber R.F. 1987. The role of free radical in senescence and wounding. New Phytol. 105: 317–344.

    CAS  Google Scholar 

  • Wagner G.J. 1993. Accumulation of cadmium in crop plants and its consequence to human health. Adv. Agron. 51: 173–212.

    CAS  Google Scholar 

  • Wink D.A., Hanbauer I., Krishna M.C., DeGraff W., Gamson J. and Mitchell J.B. 1993. Nitric oxide protects against cellular damage and cytotoxicity from reactive oxygen species. Proc. Natl Acad. Sci. USA 90: 9813–9817.

    CAS  PubMed  Google Scholar 

  • Wintermans J.F.G.M. and De Mots A. 1965. Spectrophotometric characteristics of chlorophyll a and b and their pheophytins in ethanol. Biochim. Biophys. Acta 109: 448–453.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, Y.T., Kao, C.H. Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation 42, 227–238 (2004). https://doi.org/10.1023/B:GROW.0000026514.98385.5c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GROW.0000026514.98385.5c

Navigation