Skip to main content
Log in

Ammonia RF-Plasma Treatment of Tubular ePTFE Vascular Prostheses

  • Published:
Plasmas and Polymers

Abstract

A cylindrically-configured plasma treatment system in Radio Frequency Glow Discharges fed with ammonia was used to modify the internal surface of ePTFE arterial prostheses. The effects of RF power, NH3 pressure, and treatment time on the surface chemical composition were characterized by XPS. The effect of moving the prosthesis within the plasma on the homogeneity of the surface treatment was also investigated. XPS studies were conducted in order to investigate the evolution of the treated surface during storage in atmosphere or water. Results show that the treatment at 20 W, for 250 seconds and under an ammonia pressure of 300 mTorr yielded a good compromise between ablation and substitution phenomena on the surface. With this treatment, fluorine content was decreased, while up to 11.6% of the surface atoms were substituted by nitrogen. Atmospheric storage up to 80 days shows a remodeling and oxidation of the surface by introducing up to 14.5% of oxygen. Finally, immersion in water for up to 7 hours showed a rapid defluorination of the treated surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. D. Ratner, A. Chilkoti and G. P. Lopez, Plasma deposition and treatment for biomedical applications, in Plasma Deposition, Treatment, and Etching of Polymers, R. D'Agotino, ed., Academic Press, New York, (1990), p. 463.

    Google Scholar 

  2. B. D. Ratner, J. Biomed. Mat. Res. 27, 837 (1993).

    Google Scholar 

  3. R. Sipehia, Biomat., Art. Cells & Immob. Biotech. 21, 647 (1993).

    Google Scholar 

  4. U. König, A. Augsburg, F. Simon, D. Lunkwitz, G. Hermel, C. Werner, M. Müller, H. J. Jacobash, ACS Polymer Preprints. 38, 1079 (1997).

    Google Scholar 

  5. F. Simon, G. Hermel, D. Lunkwitz, C. Werner, K. Eichhorn and H. J. Jacobash, Macromol. Symp. 103, 243 (1996).

    Google Scholar 

  6. R. Sipehia, G. Martucci, M. Barbarosie and C. Wu, Biomat., Art. Cells & Immob. Biotech. 21, 455 (1993).

    Google Scholar 

  7. P. V. Narayanan, J. Biomater. Sci. Polymer Edn. 6, 181 (1994).

    Google Scholar 

  8. Y. Matsuzawa and H. Yasuda, J. Appl. Polym. Sci. 38, 65 (1984).

    Google Scholar 

  9. J. C. Lin and S. L. Cooper, Biomaterials 16, 1017 (1995).

    Google Scholar 

  10. J. C. Lin and S. L. Cooper, J. Appl. Polymer Sci.: Appl. Polymer Symp. 54, 157 (1994).

    Google Scholar 

  11. T. Karwoski and Y. Matsuzawa, Glow discharge process for producing implantable devices, U.S. Pat. 4,632,842 (1986).

  12. F. Fracassi, Architecture of RF plasma reactors, in Plasma Processing of Polymers, R. D'Agostino, P. Favia, F. Fracassi, eds., NATO-ASI Series E: Applied Science — Vol. 346, Kluwer Academic Publishers (1997), p. 47.

  13. A. Dekker, K. Reitsma, T. Beugeling, A. Bantjes, J. Feijen and W. G. van Aken, Biomaterials 12, 130 (1991).

    Google Scholar 

  14. M. E. Ryan and J. P. S. Badyal, Macromolecules 28, 1377 (1995).

    Google Scholar 

  15. N. Inagaki, S. Tasaka and H. Kawai, J. Adhesion Sci. Technol. 3, 637 (1989).

    Google Scholar 

  16. L. J. Gerenser, J. Adhesion Sci. Technol. 1, 303 (1987).

    Google Scholar 

  17. G. C. S. Collins, A. C. Lowe and D. Nicholas, Eur. Polymer J. 9, 1173 (1973).

    Google Scholar 

  18. D. S. Everhart, C. N. Reilley, Anal. Chem. 53, 665 (1981).

    Google Scholar 

  19. P. Favia, V. H. Perez-Luna, T. Boland, D. G. Castner and B. D. Ratner, Plasmas & Polymers 1, 299, (1996).

    Google Scholar 

  20. L. Ternay, Contemporary Organic Chemistry, W. B. Saunders (1979).

  21. P. A. Redhead, Vacuum 12, 203 (1962).

    Google Scholar 

  22. T. R. Gengenbach, X. Xie, R. C. Chatelier, H. J. Griesser, J. Adhesion Sci. Technol. 8, 305 (1994).

    Google Scholar 

  23. P. Favia, M. V. Stendardo and R. d'Agostino, Plasmas and Polymers 1, 91 (1996).

    Google Scholar 

  24. J. M. Strobel, M. Strobel, C. S. Lyons, C. Dunatov, S. J. Perron, J. Adhesion Sci. Technol. 5, 119 (1991)

    Google Scholar 

  25. M. Szycher, Medical/Pharmaceutical markets for medical plastics, in High Performance Biomaterials, M. Szycher, ed., Technomic, Lancaster, PA, (1991), p. 3.

    Google Scholar 

  26. D. Ratner, Biomaterials science: an interdisciplinary endeavor, in Biomaterials science: an introduction to materials in medicine, B. D. Ratner, A. S. Hoffman, F. J. Schoen, J. E. Lemons, eds., Academic Press, San Diego, (1996), p. 1.

    Google Scholar 

  27. R. Guidoin, N. Chakfé, S. Maurel, T. How, M. Batt, M. Marois and C. Gosselin, Biomaterials 14, 678 (1993).

    Google Scholar 

  28. S. P. Schmidt, W. V. Sharp, M. M. Evancho and S. O. Meerbaum, Endothelial Cell Seeding of Prosthetic Vascular Grafts-Current Status, in High Performance Biomaterials, M. Szycher, ed., Technomic, Lancaster, PA, (1991), p. 483.

    Google Scholar 

  29. C. Gosselin, D. Ren, J. Ellinger and H. P. Greisler, Am. J. Surg. 170, 126 (1995).

    Google Scholar 

  30. M. A. Golden, S. R. Hanson, T. R. Kirkman, P. A. Schneider and A. W. Clowes, J. Vasc. Surg. 11, 838 (1990).

    Google Scholar 

  31. J. M. Seeger and N. Klingman, J. Vasc. Surg. 8, 476 (1988).

    Google Scholar 

  32. J. D. Beard and P. A. Gaines, Br. J. Surg. 80, 185 (1993).

    Google Scholar 

  33. J. R. Hollahan, B. B. Stafford, R. D. Falb and S. T. Payne, J. Appl. Polymer Sci. 13, 807 (1969).

    Google Scholar 

  34. Y. Nakayama, T. Takahagi, F. Soeda, S. Nagaoka, J. Suzuki and A. Ishitani, J. Polym. Sci., Part A: Polym. Chem. 26, 559 (1988).

    Google Scholar 

  35. T. A. Giroux and S. L. Cooper, J. Colloid Interface Sci. 146, 179 (1991).

    Google Scholar 

  36. B. D. Ratner, D. Leach-Scampavia and D. G. Castner, Biomaterials 14, 148 (1993).

    Google Scholar 

  37. Y. Babukutty, M. Kodama, H. Nomiyama, M. Kogoma and S. Okazaki, Preparation of acrylamide coated PVC tube by APG treatment and its characterization, in Advanced Biomaterials in Biomedical Engineering and Drug Delivery Systems, N. Ogata, S. W. Kim, J. Feijen and T. Okano, eds., Springer-Verlag, Tokyo (1996), p. 217.

    Google Scholar 

  38. A. S. Hoffman, A. Garfinkle, B. D. Ratner and S. R. Hanson, Plasma gas discharge treatment for improving the biocompatibility of biomaterials, U.S. Pat. 4,656,083 (1987).

  39. T. A. Horbett, B. D. Ratner, J. A. Chinn and Y. Haque, Radio frequency plasma deposited polymers that enhance cell growth, U.S. Pat. 4,919,659 (1990).

  40. H. K. Yasuda, Method of making a biocompatible prosthesis, U.S. Pat. 4,994,298 (1991).

  41. A. S. Hoffman, A. M. Garfinkle, B. D. Ratner and S. R. Hanson, Plasma gas discharge treatment for improving the compatibility of biomaterials, U.S. Pat. 5,034,265 (1991).

  42. R. E. Marchant, Anticoagulant plasma polymer-modified substrate, U.S. Pat. 5,455,040 (1995).

  43. D. G. Castner, P. Favia and B. D. Ratner, Deposition of fluorocarbon films by remote RF glow discharges, in Surface Modification of Polymeric Biomaterials, B. D. Ratner and D. G. Castner, eds., Plenum Press, New York (1997), p. 45.

    Google Scholar 

  44. P. V. Narayanan, Radiofrequency plasma biocompatibility treatment of inside of medical tubing and the like, U.S. Pat. 5,244,654 (1993).

  45. P. V. Trescony, P. Cahalan and K. Keeney, Vascular prosthesis and method, U.S. Pat. 5,246,451 (1993).

  46. P. V. Narayanan, S. M. Rowland and K. D. Stanley, Treatment of metallic surfaces using radiofrequency plasma deposition and chemical attachment of bioactive agents, U.S. Pat. 5,336,518 (1994).

  47. P. V. Narayanan, Radiofrequency plasma biocompatibility treatment of inside surfaces, U.S. Pat. 5,486,357 (1996).

  48. F. Schué, G. Clarotti, J. Sledz, A. Mas, K. E. Geckeler, W. Göpel, A. Orsetti, Makromol. Chem, Macromol. Symp. 73, 217 (1993).

    Google Scholar 

  49. H. J. Griesser, R. C. Chatelier, T. R. Gengenbach, Z. R. Vasic, G. Johnson and J. G. Steele, Polym. Int. 27, 109 (1992)

    Google Scholar 

  50. J. L. Shoet, IEEE. Trans. Plasma Sci. 19, 725 (1991).

    Google Scholar 

  51. M. Garfinkle, A. S. Hoffmann, B. D. Ratner, L. O. Reynolds, S. R. Hanson, Trans. Am. Soc. Artif. Intern. Organs 30, 432 (1984).

    Google Scholar 

  52. S. F. Popescu, M. Castonguay, C. Doillon, R. C.-Gaudreault, G. Laroche. Society for Biomaterials 25th Annual Conference, Proceeding vol. XXII, 574, April 28–May 2, 1999, Rhode Island, USA.

    Google Scholar 

  53. G. Beamson and D. Briggs, High Resolution XPS of Organic Polymers, John Wiley & Sons (1992).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Laroche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mantovani, D., Castonguay, M., Pageau, J.F. et al. Ammonia RF-Plasma Treatment of Tubular ePTFE Vascular Prostheses. Plasmas and Polymers 4, 207–228 (1999). https://doi.org/10.1023/A:1021805110689

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021805110689

Navigation